Thermodynamics Questions:

1.	Heat capacity at constant pressure is the change in (a) internal energy with temperature at constant volume (b) internal energy with temperature at constant pressure (c) enthalpy with temperature at constant volume (d) enthalpy with temperature at constant pressure
2.	The chemical potential $\left(\mu_{i}\right)$ of the $i^{\text {th }}$ component is defined as - (A) $\mu_{i}=\left(\frac{\partial \mathrm{U}}{\partial n_{i}}\right)_{\mathrm{T}, \mathrm{P}}$ (B) $\mu_{i}=\left(\frac{\partial \mathrm{H}}{\partial n_{i}}\right)_{\mathrm{T}, \mathrm{P}}$ (C) $\mu_{i}=\left(\frac{\partial \mathrm{A}}{\partial n_{i}}\right)_{\mathrm{T}, \mathrm{P}}$ (D) $\mu_{i}=\left(\frac{\partial \mathrm{G}}{\partial n_{i}}\right)_{\mathrm{T}, \mathrm{P}}$
3.	The heat capacity of 10 mol of an ideal gas at a certain temperature is $300 \mathrm{JK}^{-1}$ at constant pressure. The heat capacity of the same gas at the same temperature and at constant volume would be- (A) $383 \mathrm{JK}^{-1}$ (B) $217 \mathrm{JK}^{-1}$ (C) $134 \mathrm{JK}^{-1}$ (D) $466 \mathrm{JK}^{-1}$
4.	A thermodynamic equation that relates the chemical potential to the composition of a mixture is known as - (A) Gibbs-Helmholtz equation (B) Gibbs-Duhem equation (C) Joule-Thomson equation (D) Debye-Hückel equation
5.	Heat capacity at constant volume is the change in (a) internal energy with temperature at constant volume (b) internal energy with temperature at constant pressure (c) enthalpy with temperature at constant volume (d) enthalpy with temperature at constant pressure

6.	Without performing a calculation, estimate whether the standard entropies of the following reactions are positive or negative: (a) Ala-Ser-Thr-Lys-Gly-Arg-Serr $\xrightarrow{\text { trypsin }}$ Ala-Ser-Thr-Lys + Gly-Arg (b) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$ (c) ATP $^{4-}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{ADP}^{3-}$ (aq) $+\mathrm{HPO}_{4}^{2-}(\mathrm{aq})$ $+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
7.	The Gibb's Helmholtz equation is applicable to (a) all processes, chemical or physical (b) all process, chemical or physical but in a closed system (c) all chemical processes in a closed system (d) all physical processes in a closed system
8.	When 3.00 mol of a certain gas is heated reversibly from 275 K and 1 bar to 375 K and $1 \mathrm{bar}, \Delta S$ is $20.0 \mathrm{~J} / \mathrm{K}$. If 3.00 mol of this gas is heated irreversibly from 275 K and 1 bar to 375 K and 1 bar, will ΔS be less than, the same as, or greater than 20.0 J/K?
9.	Which of the following sets of properties constitute intensive properties? (a) temperature, pressure and volume (b) mass, density and volume (c) density, pressure and temperature (d) internal energy, density and pressure
10.	. Calculate the value of ΔE and ΔH on heating 64.0 g of oxygen from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C} . C_{v}$ and C_{p} on an average are 5.0 and $7.0 \mathrm{cal} \mathrm{mol}^{-1}$ degree $^{-1}$.
11.	For the reaction $\mathrm{H}_{2} \mathrm{~F}_{2}(\mathrm{~g}) \longrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g})$ $\Delta E=-14.2 \mathrm{kcal} / \mathrm{mole}$ at $25^{\circ} \mathrm{C}$ Calculate ΔH for the reaction.
12.	Give the conditions of applicability of each of these equations: (a) $d U=d q+d w ;(b) d U=T d S-P d V$

$\left.\begin{array}{|l|l|}\hline 13 . & \begin{array}{l}\text { Which is not true about thermodynamics? } \\ (a) \\ \text { (b) it ignores the internal structure of atoms and molecules } \\ (\text { (c) involves the matter in bulk is concerned only with the initial and final states of the system } \\ (d) \\ \text { (dt is not applicable to macroscopic systems }\end{array} \\ \hline 14 . & \begin{array}{l}\text { At } 25^{\circ} \mathrm{C} \text { for the combustion of } 1 \text { mole of liquid benzene } \\ \text { the heat of reaction at constant pressure is given by }\end{array} \\ \mathrm{C}_{6} \mathrm{H}_{6}(l)+7 \frac{1}{2} \mathrm{O}_{2}(g) \longrightarrow 6 \mathrm{CO}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(1) \\ \Delta \mathrm{H}=-780980 \text { cal }\end{array}\right\}$

1. Prove that, $\Delta G=\Delta H+T\left[\frac{\delta(\Delta G)}{\delta T}\right]_{P}$, where $\mathrm{G}, \mathrm{H}, \mathrm{T}$ and P are usual thermodynamic parameter.
2. Prove that $\left[\frac{\delta(\Delta G / T)}{\delta T}\right]_{P}=-\frac{\Delta H}{T^{2}}$
3. Explain why the entropy of a gas increases (a) with volume, (b) with temperature.
4. For a reaction, the value of ΔH is 2 times that of ΔS. Predict the spontaneity of the reaction at 298 K . $\Delta S=0.05 \mathrm{HJ} / \mathrm{mol}$.
5. Prove that for a chemical reaction the heat change occurring at constant volume is equal to the change in internal energy of the reaction.
6. 10 moles of an ideal gas are expanded from 10 lit to 50 lit at 298 K . Find the Gibb's free energy for the process.
7. Two moles of an ideal gas are allowed to expand reversibly and isothermally at 300 K from a pressure of 1 atm to a pressure of 0.1 atm . What is the change in Gibbs free energy ?
8. Free energy change for a given reaction is -90 KJ at $25^{\circ} \mathrm{C}$ and -85 KJ at $35^{\circ} \mathrm{C}$. Calculate the change in enthalpy for the reaction at $30^{\circ} \mathrm{C}$.
9. Calculate entropy change if 2 moles of water at 373 K are evaporated to vapours at 373 K . Give its units also. (Given molar heat of vaporisation of water is 9650 cal)
10. Equilibrium constant for a reaction is 1.6×10^{-4} for $400^{\circ} \mathrm{C}$. What will be the equilibrium constant at 500 ${ }^{\circ} \mathrm{C}$? Heat of reaction in this temperature range is -25.0 Kcal .
11. Derive the Clausius-Clapeyron equation for the transformation of phases.
12. The decrease in free energy is nothing but the maximum work obtainable from system other than that due to change in volume. Explain
13. The equilibrium constant Kp for a reaction $\mathrm{A}+\mathrm{B} \Leftrightarrow \mathrm{C}+\mathrm{D}$ is 10^{-12} at $327^{\circ} \mathrm{C}$ and 10^{-7} at $427^{\circ} \mathrm{C}$. Calculate the enthalpy of the reaction.
14. 5 moles of an ideal gas (diatomic) are expanded from 12 lit to 48 lit at 298 K . Find the change of Gibb's free energy and change of entropy for the process.
15. Prove that for reversible isothermal process $d G=n R T \ln \frac{P_{2}}{P_{1}}=n R T \ln \frac{V_{1}}{V_{2}}$, where $\mathrm{G}, \mathrm{n}, \mathrm{T}$ and P are usual thermodynamic parameter.
16. Ethanol boils at $78.4^{\circ} \mathrm{C}$ and standard enthalpy of vaporisation of ethanol is $42 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Calculate the entropy of vaporisation of ethanol.
17. Prove that the decrease in work function at constant temperature is equal to maximum work done by the system in reversible process.
18. For the following reaction $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})=2 \mathrm{NH}_{3}(\mathrm{~g})$ The free energy changes at $25^{\circ} \mathrm{C}$ and $35^{\circ} \mathrm{C}$ are 33.089 and -28.018 kJ respectively. Calculate the heat of reaction.
19. Calculate the increase in entropy when 2 moles of ice at $0^{\circ} \mathrm{C}$ is melted to water completely. Molar heat of fusion of ice $=1436 \mathrm{cal}$.
20. Prove that the entropy change of system and surrounding for reversible process is lesser than that the entropy change of system and surrounding for irreversible process.
21. Prove that for a chemical reaction the heat change occurring at constant pressure is equal to the change in enthaly of the reaction.
22. At 373.6 K and 372.6 K the vapour pressure of $\mathrm{H}_{2} \mathrm{O}_{(I)}$ are 1.018 and 0.982 atm respectively. What is the heat of vaporization of water? $(R=1.987$ cal)
23. Four moles of an ideal gas expand isothermally from 1 litre to 10 litres at 300 K . Calculate the change in free energy of the gas. ($\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$)
24. At what temperature will water boil under a pressure of 787 mm ? The latent heat of vaporisation is 536 cals per gram.
25. Derive the integral Clausius-Clapeyron equation.
26. Partial molal properties are studied for
(a) Extensive properties, closed system
(b) Intensive porperties, open system
(c) Extensive properties, open system

Which one of the following is an expression of the van't Hoff equation?

> A. $\ln \mathrm{K}=-\frac{\Delta H^{\theta}}{R T}+\frac{\Delta G^{\theta}}{R}$ B. $\Delta \mathrm{H}\left(\mathrm{T}_{2}\right)=\Delta \mathrm{H}\left(\mathrm{T}_{1}\right)+\Delta \mathrm{C}_{\mathrm{P}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right) \mathrm{C} . \Delta G^{\theta}=\Delta H^{\theta}-\mathrm{T} \Delta S^{\theta} \quad$ D. $\Delta \mathrm{U}=$ $\mathrm{q}+\mathrm{w}$

[^0]For a reaction, $2 \mathrm{~A}_{3} \rightleftharpoons 3 \mathrm{~A} 2$, the equilibrium constant and $\Delta \mathrm{G}^{\mathrm{o}}$ values at a certain temperature are 1×1030 and -172.4 kJ mol- 1 respectively. The equilibrium temperature in ${ }^{\circ} \mathrm{C}$ is about A. 300 K, B. 273 K C. 27 D. 298
cc

1. Which one of the following is an expression of the van't Hoff equation?
A. $\ln \mathrm{K}=-\frac{\Delta H^{\theta}}{R T}+\frac{\Delta G^{\theta}}{R}$
B. $\Delta \mathrm{H}\left(\mathrm{T}_{2}\right)=\Delta \mathrm{H}\left(\mathrm{T}_{1}\right)+\Delta \mathrm{C}_{\mathrm{P}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
C. $\Delta G^{\theta}=\Delta H^{\theta}-\mathrm{T} \Delta S^{\theta}$
D. $\Delta \mathrm{U}=$ $q+w$

For a reaction, $2 \mathrm{~A}_{3} \rightleftharpoons 3 \mathrm{~A}_{2}$, the equilibrium constant and $\Delta \mathrm{G}^{\circ}$ values at a certain temperature are 1×10^{30} and $-172.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. The equilibrium temperature in ${ }^{\circ} \mathrm{C}$ is about
A. 300 K
B. 273 K
C. 27 K
D. 298 K

1	Which one of the following is an expression of the van't Hoff equation?
	A. $\ln \mathrm{K}=-\frac{\Delta H^{\theta}}{R T}+\frac{\Delta G^{\theta}}{R}$ B. $\Delta \mathrm{H}\left(\mathrm{T}_{2}\right)=\Delta \mathrm{H}\left(\mathrm{T}_{1}\right)+\Delta \mathrm{C}_{\mathrm{P}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$ C. $\Delta G^{\theta}=\Delta H^{\theta}-\mathrm{T} \Delta S^{\theta}$ D. $\Delta \mathrm{U}$ $=\mathrm{q}+\mathrm{w}$
2	For a reaction, $2 \mathrm{~A}_{3} \rightleftharpoons 3 \mathrm{~A}_{2}$, the equilibrium constant and $\Delta \mathrm{G}^{\circ}$ values at a certain temperature are 1×10^{30} and $-172.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. The equilibrium temperature in ${ }^{\circ} \mathrm{C}$ is about -
	$\begin{array}{llll}\text { A. } 300 \mathrm{~K} & \text { B. } 273 \mathrm{~K} & \text { C. } 27 \mathrm{~K} & \text { D. } 298 \mathrm{~K}\end{array}$
3	A thermodynamic equation that relates the chemical potential to the composition of a mixture is known as-
	A. Gibbs-Helmholtz equation Gibbs-Duhem equation C. Joule-Thomson equation D. Debye-Huckel equation B.
4	The boiling point of a liquid $\left(\Delta \mathrm{H}_{\text {vap }}=21 \mathrm{cal} \mathrm{K} \mathrm{K}^{-1} \mathrm{~mole}^{-1}\right)$ is $27^{\circ} \mathrm{C}$. Its molar enthalpy of vaporization is roughly- A. $567 \mathrm{cal} \mathrm{mole}^{-1}$ B. $6300 \mathrm{cal} \mathrm{mole}^{-1}$ C. $3150 \mathrm{cal} \mathrm{mole}^{-1}$ D. $1575 \mathrm{cal}_{\mathrm{mole}}{ }^{-1}$

5	The equilibrium constant for a gaseous reaction gets doubled when the temperature is raised from $27^{\circ} \mathrm{C}$ to $37^{\circ} \mathrm{C}$. The heat of reaction is-
	$\begin{array}{lllll}\text { A. } 53598.59 \mathrm{~J} & \text { B. } 44356.61 \mathrm{~J} & \text { C. } 23476.34 \mathrm{~J} & \text { D. } 34289.43 \mathrm{~J}\end{array}$
6	For a reaction, $2 \mathrm{~A}_{3} \rightleftharpoons 3 \mathrm{~A}_{2}$, the equilibrium constant and $\Delta \mathrm{G}^{\circ}$ values at a certain temperature are 1×10^{30} and $-172.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. The equilibrium temperature in ${ }^{\circ} \mathrm{C}$ is about -
	$\begin{array}{llll}\text { A. } 300 \mathrm{~K} & \text { B. } 273 \mathrm{~K} & \text { C. } 27 \mathrm{~K} & \text { D. } 298 \mathrm{~K}\end{array}$
7	The entropy of vaporisation of a liquid is $58 \mathrm{JK}-1 \mathrm{~mol}-1$. If 100 g of its vapour condenses at its boiling point of $123^{\circ} \mathrm{C}$, the value of entropy change for the process is (molar mass of the liquid $\left.=58 \mathrm{~mol}^{-1}\right)$ -
	A. $-0.2525 \mathrm{JK}^{-1} \quad$ B. $100 \mathrm{JK}^{-1} \quad$ C. $123 \mathrm{JK}^{-1} \quad$ D. $0.2525 \mathrm{JK}^{-1}$
8	The equation $\frac{d P}{d T}=\frac{\Delta H}{T\left(V_{2}-V_{1}\right)}$ is called
	A. Gibb's Helmholtz equation B. Kirchoff's equation C. Clapeyron equation D. ClausiusClapeyron equation
9	The Clausius- Clapeyron equation helps to calculate-
	A. latent heat of vaporization B. boiling point or freezing point C. Vapour pressure at one temperature, if at another temperature is given D. all of the above
10	The equation $\frac{\Delta H}{R T^{2}}=\frac{d\left(\ln K_{P}\right)}{d T}$ is known as
	A. van't Hoff equation B. van't Hoff isochore C. Gibbs equation D. Gibbs Duhem equation
11	Which of the following may be used to define chemical potential- G i. $\left(\frac{\partial G}{\partial n_{i}}\right) T, P, n_{j} ; i \neq J$ ii. $\left(\frac{\partial A}{\partial n_{i}}\right) T, V, n_{j} ; i \neq J$ iii. $\left(\frac{\partial H}{\partial n_{i}}\right) S, P, n_{j} ; i \neq J \quad$ iv. $\left(\frac{\partial E}{\partial n_{i}}\right) S, V, n_{j} ; i \neq J$
	$\begin{array}{llll}\text { A. Option (i) only } & \text { B. (ii) only } & \text { C. (iii) only } & \text { D. (i), (ii), (iii) and (iv) only }\end{array}$
12	A thermodynamic equation that relates the chemical potential to the composition of a mixture is known as-
	A. Gibbs-Helmholtz equation \quad B. Gibbs-Duhem equation \quad C. Joule-Thomson equation D. Debye-Huckel equation

Which of the following may be used to define chemical potential7584864174
i. $\left(\frac{\partial G}{\partial n_{i}}\right) T, P, n_{j} ; i \neq J$ ii. $\left(\frac{\partial A}{\partial n_{i}}\right) T, V, n_{j} ; i \neq J \quad$ iii. $\left(\frac{\partial H}{\partial n_{i}}\right) S, P, n_{j} ; i \neq J \quad$ iv. $\left(\frac{\partial E}{\partial n_{i}}\right) S, V, n_{j} ; i \neq J$
A. Option (i) only
B. (ii) only
C. (iii) only
D. (i), (ii), (iii) and (iv) only
2. A thermodynamic equation that relates the chemical potential to the composition of a mixture is known as-
A. Gibbs-Helmholtz equation Gibbs-Duhem equation C. Joule-Thomson equation D. DebyeHuckel equation B.
2. The boiling point of a liquid ($\left.\Delta \mathrm{H}_{\mathrm{vap}}=21 \mathrm{cal} \mathrm{K}^{-1} \mathrm{~mole}^{-1}\right)$ is $27^{\circ} \mathrm{C}$. Its molar entropy of vaporosation is roughly-
A. $567 \mathrm{cal} \mathrm{mole}^{-1}$
B. $6300 \mathrm{cal} \mathrm{mole}^{-1}$
C. $3150 \mathrm{cal} \mathrm{mole}^{-1}$
D. $1575 \mathrm{cal} \mathrm{mole}^{-1}$
3. The equilibrium constant for a gaseous reaction gets doubled when the temperature is raised from $27^{\circ} \mathrm{C}$ to $37^{\circ} \mathrm{C}$. Calculate the heat of reaction.
A. 53598.59 J
B. 44356.61 J
C. 23476.34 J
D. 34289.43 J

For a reaction, $2 \mathrm{~A}_{3} \rightleftharpoons 3 \mathrm{~A}_{2}$, the equilibrium constant and $\Delta \mathrm{G}^{\circ}$ values at a certain temperature are 1×10^{30} and $-172.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. The equilibrium temperature in ${ }^{\circ} \mathrm{C}$ is about
A. 300 K
B. 273 K
C. 27 K
D. 298 K

The entropy of vaporisation of a liquid is $58 \mathrm{JK}-1 \mathrm{~mol}-1$. If 100 g of its vapour condenses at its boiling point of $123^{\circ} \mathrm{C}$, the value of entropy change for the process is (molar mass of the liquid $=58 \mathrm{~mol}^{-1}$)
A. $-0.2525 \mathrm{JK}-1$
B. $100 \mathrm{JK}-1$
C. $123 \mathrm{JK}-1$
D. $0.2525 \mathrm{JK}-1$

34. The equation $\frac{d P}{d T}=\frac{\Delta H}{\mathrm{~T}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)}$ is called
(a) Gibb's Helmholtz equation
(b) Kirchoff's equation
(c) Clapeyron equation
(d) Clausius Clapeyron equation

Answer. (c)
35. The Clausius Clapeyron equation helps to calculate
(a) latent heat of vaporization
(b) boiling point or freezing point
(c) vapour pressure at one temperature, if at another temperature is given
(d) all of the above

Answer. (d)

The Clausius- Clapeyron equation helps to calculate
A. latent heat of vaporization B. boiling point or freezing point C. Vapour pressure at one temperature, if at another temperature is given D. all of the above

The equation $\frac{\Delta H}{R T^{2}}=\frac{d\left(\ln K_{P}\right)}{d T}$ is known as
A. van't Hoff equation B. van't Hoff isochore
C. Gibbs equation D. Gibbs Duhem equation

From the cell reaction in a cell
$\mathrm{Hg}_{2} \mathrm{Cl}_{2}(\mathrm{~s})+\mathrm{H}_{2}(1 \mathrm{~atm}) \rightarrow 2 \mathrm{Hg}+2 \mathrm{H}^{+}(a=1)$
the E° of the cell at $25^{\circ} \mathrm{C}$ is 0.2676 volt and $\left(\frac{\partial E^{\circ}}{\partial T}\right)_{P}=-31.9 \times 10^{-4}$ volt deg $^{-1}$. Calculate $\Delta \mathrm{H}^{\circ}$ and ΔS°.
Answer. 33.299 kJ; -6.1567 J K-1

[^0]: The equilibrium constant for a gaseous reaction gets doubled when the temperature is raised from $27^{\circ} \mathrm{C}$ to $37^{\circ} \mathrm{C}$. Calculate the heat of reaction. Ans 53598.59 J)

