KIIT questions (previous years)

Thermodynamics questions

- 1. (a) 10moles of an ideal gas expand isothermally from a volume $[2 \times 10]$ of 2litres to 20litres. Find the entropy change accompanying the expansion.
 - (b) For the reaction, N₂(g) + 3H₂(g) → 2NH₃(g), the free energy changes at 25 °C and 35 °C are –3.98 and –3.37 Kcal respectively. Calculate the heat of reaction at 35 °C.
 - (c) For the dissociation reaction of a metal oxide, $\Delta H = 35$ kJ/mol and $\Delta S = 0.08$ kJ/K at 1 atm pressure. Find the temperature up to which the reaction would not be spontaneous.
 - (b) Enthalpy and entropy changes of a reaction are 40.63KJ/mol and 108.8 J/molK respectively. Predict the feasibility of the reaction at 27 °C.
 - (a) The voltage of the cell Pb/PbSO₄| Na₂SO₄.10 H₂O| HgSO₄/Hg is 0.9647V at 25 $^{\circ}$ C. The temperature coefficient is 1.74 × 10⁻⁴ VK⁻¹. Calculate the value of Δ G, Δ S and Δ H.
- 3. (a) Show that for $H_2O(1) \longleftrightarrow H_2O(v)$, $ln \frac{P_2}{P_1} = \frac{\Delta H_V}{R} \left[\frac{T_2 T_1}{T_1 T_2} \right]$. Where $P_1 \& P_2$ are vapour pressures at $T_1 \& T_2$ temperatures respectively and ΔH_V is the molar heat of vaporisation of water.
 - (b) What is Chemical potential? Derive Gibb's Duhem equation.

(b) Show that,

 $\Delta G = \Delta H + T \left[\frac{\partial (\Delta G)}{\partial T} \right]_P$, where G, H, T, and P are usual thermodynamic parameters.

- 6. (a) The equilibrium constant for a reaction at 327 °C and 427 °C are 10⁻¹² and 10⁻⁷ respectively. Calculate the enthalpy change of the reaction. $\triangle H = 402 \text{ kJ/mol}$
 - (b) At what temperature a reaction would be spontaneous; if the $\Delta H = 30 \text{ KJ/mol}$ and $\Delta S = 0.08 \text{ KJ/mol}$ at 1 atm.pressure for the reaction.
- (b) The degree of dissociation of PCl₅ at 500K and 1 atm pressure is 0.75. Find K_p.
- (c) For the dissociation reaction of a metal oxide, $\Delta H = 35$ kJ/mol and $\Delta S = 0.08$ kJ/K at 1 atm pressure. Find the temperature up to which the reaction would not be spontaneous.
 - (b) K_p for a reaction is 1.6×10^{-4} at 400° C. Find K_p at 500° C? [4 Heat of reaction in this temperature range is -25.0 kcal.
 - (b) The equilibrium constant for a reaction at 400 $^{\circ}$ C is 1.5×10^{-5} . Find the same at 500 $^{\circ}$ C. Given heat of the reaction is -90 kJ/mole.

Give the graphical representation of vapour pressure vs. mole fraction for non ideal solution and explain the curves.