
1

Software Project Management

Vladan Devedzic

FON - School of Business Administration, University of Belgrade, Yugoslavia

In order to organize and manage a software development project successfully,
one must combine specific knowledge, skills, efforts, experience, capabilities,
and even intuition. They are all necessary in order to be able answer questions
such as: What artifacts to manage and control during software development?
How to organize the development team? What are the indicators and measures
of the product's quality? How to employ a certain set of development practices?
How to transition a software development organization to a new modeling
and/or development paradigm? How to create and maintain a good relationship
with the customers and end-users? What remedial actions to take when
something goes wrong in the course of the project? What are the heuristics that
can help managers in conducting the software development process?

The manager of a software development project should answer the above
questions in the context of the project itself. However, there is a vast amount of
knowledge the manager should possess that transcends the boundaries of any
specific project.

The purpose of this chapter is to provide an extended overview of many
important issues around which such knowledge should be structured. The
introductory section merely introduces the issues and the context within which
the other sections discuss them. Each of the remaining sections covers one of the
issues in more detail. The idea has been to provide a balanced coverage of the
issues from both the manager's and the developer's perspectives.

Keywords. Software development process, management practices, metrics,

organizational aspects, standards.

Introduction

Software development is a complex process involving such activities as domain
analysis, requirements specification, communication with the customers and
end-users, designing and producing different artifacts, adopting new paradigms
and technologies, evaluating and testing software products, installing and

2 Handbook on Software Engineering & Knowledge Engineering

maintaining the application at the end-user's site, providing customer support,
organizing end-user's training, envisioning potential upgrades and negotiating
about them with the customers, and many more.

In order to keep everything under control, eliminate delays, always stay
within the budget, and prevent project runaways, i.e. situations in which cost and
time exceed what was planned, software project managers must exercise control
and guidance over the development team throughout the project's lifecycle [1].
In doing so, they apply a number of tools of both economic and managerial
nature. The first category of tools includes budgeting, periodic budget
monitoring, user chargeback mechanism, continuous cost/benefit analysis, and
budget deviation analysis. The managerial toolbox includes both long-range and
short-term planning, schedule monitoring, feasibility analysis, software quality
assurance, organizing project steering committees, and the like.

Requirements
Engineering

Software
Development

Process

Software
Metrics

Software
Architecture

Management
Strategies and

Techniques

Organizational
Aspects

Software
Quality

Assurance

Risk
Assessment

Software
Testing

Productivity

Software
Configuration
Management

Best Practices

Standards

Software
Project

Management

Figure 1 - Some important issues of software project management

All of these activities and tools help manage a number of important issues in
the process of software development. Figure 1 illustrates some of the issues, but
definitely not all of them. The issues shown in Figure 1 have been selected for
an extended overview in the remainder of this chapter based on the following
criteria:
• their priority in the concerns of most software project managers,

according to the managers themselves - this is evident from the case
studies, interviews, and reports of many software project managers and
consultants in software industry worldwide (see, for example, [12], [20],
and [49]);

• the frequency of their appearing as topics in the relevant, industry-
oriented software engineering journals and magazines, such as IEEE

Software Project Management 3

Computer, IEEE Software, and Communications of the ACM, during the
last decade;

• their importance as identified by relevant committees, associations, and
consortia of software developers (see, for example, [26]).
The chapter does not address the economic aspects of software project

management, such as budgeting, negotiating, outsourcing, and contracts. The
goal is to consider some of the important managerial issues specific to software
development, not those that appear in other kinds of development projects as
well.

Software Development Process

One of the primary duties of the manager of a software development project is to
ensure that all of the project activities follow a certain predefined process, i.e.
that the activities are organized as a series of actions conducing to a desirable
end [33]. The activities are usually organized in distinct phases, and the process
specifies what artifacts should be developed and delivered in each phase. For a
software development team, conforming to a certain process means complying
with an appropriate order of actions or operations. For the project manager, the
process provides means for control and guidance of the individual team
members and the team as a whole, as it offers criteria for tracing and evaluation
of the project's deliverables and activities.

Software development process encompasses many different tasks, such as
domain analysis and development planning, requirements specification, software
design, implementation and testing, as well as software maintenance. Hence it is
no surprise at all that a number of software development processes exist.
Generally, processes vary with the project’s goals (such as time to market,
minimum cost, higher quality and customer satisfaction), available resources
(e.g., the company’s size, the number, knowledge, and experience of people --
both engineers and support personnel -- and hardware resources), and
application domain.

However, every software developer and manager should note that processes
are very important. It is absolutely necessary to follow a certain predefined
process in software development. It helps developers understand, evaluate,
control, learn, communicate, improve, predict, and certify their work. Since
processes vary with the project's size, goals, and resources, as well as the level at
which they are applied (e.g., the organization level, the team level, or the
individual level), it is always important to define, measure, analyze, assess,
compare, document, and change different processes.

There are several well-known examples of software development processes.
Each process relies on a certain model of software development. The first well-
established and well-documented software development process has followed
the waterfall model. One of its variants is shown in Figure 2. The model assumes

4 Handbook on Software Engineering & Knowledge Engineering

that the process of software development proceeds through several phases in a
more-or-less linear manner. The phases indicated in Figure 2 are supposed to be
relatively independent. There is not much feedback and returning to previous
phases other than the one directly preceding the phase in focus. In other words,
once a certain phase is finished it is considered closed, and the work proceeds
with the next phase. Many developers have criticized the waterfall model for its
rigidity in that sense, and for its failure to comply with the reality of ever-
changing requirements and technology. However, the waterfall model is at least
partially present in most of the other models as well, simply because of its
natural order of phases in software development.

Maintenance

System
testing

System
integration

Module
coding and

testing

Detailed
design

Preliminary
design

System
feasibility

Requirements
specification

Figure 2 - The waterfall model of software development (based on [5])

There have been many attempts to overcome the limitations of the waterfall
model. Two common points in all such attempts are introduction of iterations in
software development activities and incremental development. Iterative and
incremental software development means going through the same activities more
than once, throughout the product's lifecycle, each time producing new
deliverables and/or improving the old ones. The main advantage of working in
that way is that each individual developer works on a small ``work packet" at
any given moment, which is much easier to control.

A classical example of iterative and incremental models is the spiral model
[9], sketched in Figure 3. In the spiral model, there are five core tasks: planning
and design (largely corresponding to the classical analysis phase), approval
(requirements specification), realization (design and implementation), revision
(testing and modification), and evaluation (integration and system-level testing).
The process iterates through these tasks, getting closer and closer to the end by
adding increments (e.g., new functions, new design, new modules, new or
improved testing procedures, new or improved parts of the user interface, new
integration and testing certificates, and so on) to the product in each iteration.
The spiral model underlies many processes, such as DBWA (Design By

Software Project Management 5

Walking Around) [50], and PADRE (Plan-Approve-Do-Review-Evaluate) [41].
The DBWA process combines the spiral model with multiple design views,
flexible structuring of development teams, and dynamic changes in modes of
working (e.g., working individually, working in pairs, or working in small
teams), in order to improve the process efficiency and parallelism. The PADRE
process uses the spiral model at multiple levels - the project level, the phase
level, and the individual software module level - thus creating the ``spiral in a
spiral in a spiral" effect.

Plan

Approve

Do

Review and Revise

Evaluate

Figure 3 - The spiral model of software development (after [9] and [41])

The JNIDS model (Joint National Intelligence Development Staff) [5] is
similar to the spiral model in that it is also iterative and incremental. There are,
however, six tasks in the JNIDS model: requirements analysis, team
orchestration (i.e. the team-building stages, ``forming, storming, norming, and
performing"), design, coding, integration, and system implementation (delivery
and maintenance). The model prescribes to iterate through all six tasks in every
phase of software development. There are five phases (requirements
identification, prototype development, the breadth of system functionality,
system functionality refinement, and transition). They differ in the amount of
time and effort they dedicate to each specific task. The first phase focuses most
on requirements analysis, the second one focuses most on team orchestration,
and so on. The last phase is concentrated most on integration and maintenance.
Hence on the time axis the shift of the focus of attention in different phases
generates a waterfall-like shape if the six tasks are put on the ordinal axis.
However, an important difference between the classical waterfall and JNIDS
models is that in the JNIDS model developers conduct their activities through all
tasks in each phase.

The Unified Process for object-oriented software development [24], Figure
4, has recently become very popular. It is also iterative and incremental, just like
the spiral and JNIDS models. All of its iterations go through five core workflows
(tasks) shown in Figure 4, and are grouped in four phases - inception (resulting
in a global vision of the software product), elaboration (detailed analysis and
design of the baseline architecture), construction (building the system's initial
capability), and transition (product release). Just like in the JNIDS model, Figure
4 shows ``fuzzified" traces of the waterfall model in the Unified Process. The

6 Handbook on Software Engineering & Knowledge Engineering

process is architecture-centric, meaning that its main deliverable is an executable
architecture (the system), described by a set of models generated during the
system development (use-case model, analysis model, design model, deployment
model, implementation model, and test model). The models are represented
using the standard UML diagrams [13]. The Unified Process is also use-case
oriented, which means that generic scenarios of how the user or external
applications use the system or its subsystems bind all the workflows and drive
the iterations.

Iterations

Inception Elaboration Construction Transition

PHASESCORE
WORKFLOWS

Requirements

Analysis

Design

Implementation

Test

Preliminary
iteration(s)

Iter.
1

Iter.
2

Iter.
n

Iter.
n+1

Iter.
m

Iter.
m+1

Iter.
n+2

An iteration in the
elaboration phase

Figure 4 - Core workflows, phases, and iterations in the Unified Process of object-

oriented software development (after [24])

Being iterative, the Unified Process reduces additional development costs
generated by unexpected situations (usually just a single iteration of work is
lost). Iterating through all core workflows in every iteration, the process is
compliant with the reality of ever changing and incomplete user requirements.
The Unified Process is also risk-driven - it enforces examining areas of highest
risk in every phase and every iteration, as well as doing the most critical tasks
first. Hence it minimizes the risk of project runaways. Managers can easily adapt
the Unified Process to different application types, project sizes, development
teams, and levels of competence.

Because of the importance of the Unified Process for software project
management today, comments on some other issues from the Unified Process
perspective are included in the following chapters.

Software Project Management 7

Requirements Engineering

Requirements engineering is the discipline of gathering, analyzing, and formally
specifying the user's needs, in order to use them as analysis components when
developing a software system [18], [44]. Requirements must be oriented towards
the user's real needs, not towards the development team and the project
managers.

Almost all software development processes one way or another stress
requirements analysis and specification as one of their core workflows. The
reasons are simple. It is necessary to manage requirements as well as possible
because a small change to requirements can profoundly affect the project's cost
and schedule, since their definition underlies all design and implementation [40].
Unfortunately, in most practical projects it is not possible to freeze the
requirements at the beginning of the project and not to change them.
Requirements develop over time, and their development is a learning process,
rather than a gathering one. The intended result of this process is a structured but
evolving set of agreed, well understood, and carefully documented requirements
[25]. This implies the need for requirements traceability, i.e. the ability to
describe and follow the life of a requirement, in both a forward and backward
direction, ideally through the whole system's life cycle.

The importance of constantly involving the users in the process of
requirements analysis and specifications cannot be overemphasized. Only the
users know their domain properly, and for that reason they should certainly
participate in defining the system's functions, designing them, and evaluating
their implementation and testing. The users should also participate in creating,
verifying, and updating the requirements specification document for the project.
The users should share with the developers the responsibility for the
requirements' completeness and consistency. It is the project managers' duty to
establish and maintain good relations with the users throughout the development
process, as well as to consult them whenever the project gets stuck due to the
development team's lack of domain understanding.

It is essential to make as explicit as possible all the requirements that reflect
the user's work and the tasks that the software system under development is
supposed to automate. Any situation in which users can find themselves when
doing their job is the context that must be taken into account through
requirements engineering. It is equally important not to concentrate on a single
user's task, but to cover communication between users when the task requires
collaboration.

There is a wide spectrum of techniques for requirements engineering.
Whatever technique is applied, it is always desirable to involve the user to
increase the correctness of the requirements specification. Some of the
techniques are:
• structured interviews and questionnaires that the user fills in (inquiry-

based requirements gathering);

8 Handbook on Software Engineering & Knowledge Engineering

• diagram-based requirements analysis (using multiple diagrams to sketch
relevant parts of the user's work process and describe the requirements
graphically);

• using metaphors of the user's work process (e.g., the office metaphor, or
the agent/agency metaphor);

• scenario analysis (scenario is a typical sequence of activities
characterizing the user's work process, hence it reflects what the user will
do with the system and helps define the test procedures);

• using special-purpose software tools for requirements gathering (some of
them can be simulation-based);

• requirements completeness and consistency checks (some of them can be
automated, others must be performed manually);

• using special-purpose requirements-specification languages in order to
describe requirements more formally and hence provide more automated
requirements tracing;

• prototype system development, in order to make the requirements clear
and to establish better mutual understanding with the users;

• analyzing videotaped user's work process.
When managing software development according to the Unified Process,

requirements are captured mostly through the use cases and use-case diagrams.
A use case can be described as a specific way of using the system from a user’s
(actor’s) perspective [13]. Use-case diagrams graphically depict system behavior
(use cases), i.e. a high level view of how the system is used as viewed from an
outsider’s (actor’s) perspective [24].

Software Architecture

Software architecture encompasses specification and design of the application's
global structure, leaving the details aside [42]. It is related to the general
software organization in terms of its components and connectors. Components
are things like modules, compilation units, objects, and files. Connectors define
interactions among components through procedure calls, parameters of
initialization, instructions for the linker, and so on.

Defining the architecture of a software system involves the choice of
architectural style. Each architectural style defines a family of software systems
organized in a similar way, the corresponding vocabulary of components and
connectors, constraints in using the components and connectors in building the
system according to that style, and the way the overall system behavior depends
on the behavior of its components. Examples of software architectural styles
include layered architectures, pipeline architecture, object-oriented architecture,
event-based architecture, repository-based architecture, component-based
systems (CBS) architectures, process-control architectures, real-time
architectures, and various heterogeneous and Internet-based architectures.

Software Project Management 9

As soon as the initial set of requirements is gathered, the project manager
should direct the chief architect and some other engineers to define the initial
software architecture of the system to be developed. Software architecture
definition does not get sealed after the project begins. On the contrary, it is an
evolving activity that continues through all the phases of the product's lifecycle.
It interweaves with requirements specification, domain analysis, study of
possibilities for reuse, and even design.

The Unified Process of software development treats the problem of software
architecture definition and evolution as its central activity [24]. Software
architecture is described by different views of the system being built, and these
views are in turn represented by different UML models and diagrams.

One of the ultimate goals of the Unified Process is to produce and
continuously evolve the system's executable architecture. Even in the project's
early phases a limited version of the executable architecture must be developed
and demonstrated. At the project's closure, it is important for the system
architecture to support all of the use-cases specified through requirements
engineering. However, in the early phases the architects should capture just a
rough outline of the architecture. It is not viable to base that outline on all of the
use cases. For that reason, architects first select the general architectural style in
a use-case-independent way, and then refine it taking into account only a small
subset of all the use-cases for the system. That small subset usually contains no
more than 5-10% of the whole set, but all the use-cases in the subset represent
the key functions of the system under development. As the use cases are further
specified and they mature, more of the architecture is discovered, and more
details are introduced. This process continues until the architecture stabilizes.

Selecting an architectural style and evolving the software architecture is far
from being simple, because it involves many issues other than just the system's
overall structure. Project managers must be aware of such issues. The issues
include the platform the system is to run on (e.g., the hardware architecture,
operating system, database management system, and network protocols), global
control structures, data communication, synchronization, and access protocols,
reusable building blocks available, deployment considerations, legacy systems,
the choice among multiple design alternatives, assignment of functions to
modules and subsystems, the system's functionality, scalability, reliability, and
usability, its comprehension and resilience to changes, and also its esthetical
considerations.

For that reason, the architecture of a software system is considered a product
in its own right, along with the main software product to be delivered to the
customers. It is the development team that benefits most from the software
architecture as a product.

10 Handbook on Software Engineering & Knowledge Engineering

Organizational Aspects

Software project management always involves various organizational aspects,
such as creating and staffing development teams, assigning roles to the team
members, modalities of software development, leadership considerations,
interpersonal communication at work, staff training and embracing new
technologies, organization's culture, social and ethical issues, and so on [3], [4],
[12], [16]. Organizational aspects of software development are crucial for all
successful projects. They are neither about hardware nor about software - they
are about ``peopleware", i.e. about using, coordinating, and managing human
resources in an organization effectively. In the context of fast-paced and
extremely fluid dynamics of software industry, the key to success or failure of
software project is the way it is organized and managed.

The foundation of all organizational aspects in software development are the
general principles shown in Figure 5, as suggested in [16]. Experience shows
that the four principles in the corners of the square in Figure 5 constitute the
roots of most software organizations' cultures, hence it is important for project
managers to fully understand their meanings and importance. The principles are
not mutually exclusive, and they all have advantages and disadvantages.
Adopting any one of them in a new software organization does not guarantee
success and does not necessarily result in projects' failure.

group
cohesion

intrinsic flexibility

independence collaboration

hierarchyalignment
Figure 5 - General principles of software organizations (after [16])

The principle of hierarchy implies a strict pyramid of leadership, roles,
duties, and tasks in the organization, with strict adherence to the organization's
internal rules. Drifting away from the predefined overall course of the
organization is interpreted as a lack of loyality that may lead to the
organization's instability, and is not tolerated.

On the opposite end of the same ``dimension" is the principle of
independence. It relies on the individuals' initiative and individuality in doing
their jobs, directing their work, and to an extent even in decision making.
Organizations that adopt this principle are usually open to innovation and
changes, new technologies, and creative autonomy of their members.

Software Project Management 11

Collaboration is the principle of intensive teamwork, in which invention is
combined with stability, and individuality with collective interests through open
discussion about all the problems that come along as the project advances. Roles
and tasks are assigned flexibly, and there is a high degree of adaptivity among
the team members due to the intensive information exchange between them.

Finally, the principle of alignment suggests referring each individual in an
organization to the organization's common vision of collective goals and adopted
technology. Each individual is expected to support the adopted uniform
approach to software development and comply with the work of others in the
organization.

Of course, there are many points in between the two extremes along each
dimension; hence most software organizations can be actually represented as
points somewhere in the square of Figure 5. It is also important to note in Figure
5 how the cohesion of the development team increases with the hierarchy and
collaboration principles, as well as how the flexibility of the organization
increases with independence and collaboration principles.

The four principles can affect a number of decisions in improving a software
organization, development processes, and project management. For example,
creating the development team for a software development project, staffing it,
assigning roles to the team members, as well as selecting the project leader(s)
can all vary to a notable extent depending on the organization's dominant
principle. If the principle of hierarchy is the dominant one, well-suited team
members are those that prefer precisely defined tasks, roles, and guidance, and
the team leader should be a person of high authority who sets precise criteria and
expects results. Under the principle of independence, a free-style, informal,
charismatic leader is much more likely to create and lead the team successfully.
The team members in that case should be independent individuals, who don't
need guidance, and are always ready for initiative and open to changes. Similar
suggestions exist for applying the principles of collaboration and alignment.

Put in other words, it is an appropriate professional culture that a software
development organization must grow in order to be able to manage all of its
organizational aspects successfully, both on the long-term and day-to-day bases
[3]. A culture is established in an organization when its software engineers
internalize the organization’s professional values and common processes.
Engineers should define these common processes from the practices they trust.
Developers adopt and adhere to a professional discipline that orients them to
add, modify, improve, or improvise such practices in order to achieve project
objectives. Once people in the organization have internalized common practices,
they transmit the culture through their behaviors, artifacts, and mentoring of
others. An organization that lacks repeatable management or development
practices does not have a professional culture. It is the responsibility of the
organization's executives to enforce the above common principles or core beliefs
that will help create, staff, orient and support development teams in practical
projects.

12 Handbook on Software Engineering & Knowledge Engineering

There are efforts devoted to the institutionalization of repeatable common
practices in software development organizations. Software Engineering
Institute’s Capability Maturity Model (CMM) [36], [45] is the most widely
known among such efforts. CMM provides a reference for determining the
maturity level of an organization's software processes and deals with the
establishment of management structures that are to facilitate the development of
the required professional culture. According to CMM, an organization can be at
any one of five predefined maturity levels, in terms of its commitment to
systematically perform the specific set of key practices that have been defined
for a given level. At Level 1, the organization is typically chaotic and
unmanaged, does not practice any uniform approach to the process of software
development, budgets are always overrun, the products are unstable, and never
meet the user’s expectations. At Level 2, processes in the organization are
controlled and maintained in detail, hence are repeatable. At Level 3, the
organization contains a coherent, integrated set of well-defined software
engineering and management processes, characterized by readiness criteria,
completion criteria, inputs, outputs, and verification mechanisms. At Level 4, the
organization formulates and strictly applies explicit assessment and feedback
mechanisms, and uses them to measure efficiency and effectiveness in software
development. Finally, the highest point in evolution is Level 5, at which the
organization is capable of using the outcome data from its own processes for
further self-improvement.

Some of the practices an organization may follow when establishing its
professional discipline and culture are the following ([1], [3], [4], [12], [27],
[20], [21], and [49]):
• flexible rotation of key roles and tasks (e.g., system design, integration,

testing, code inspection) in the project team;
• maintaining a catalogue that specifies all key roles and responsibilities;
• the role of the project leader(s) is focused mostly on project management

and system design, and much less on coding and testing;
• the project leader should have a small board of project advisors who set

the project goals, prepare status reports on intermediate stages of
development, care about resource management, monitor the project
dynamics and stability, and suggest how to better staff the project;

• decision making should be based on consensus among the team members
whenever possible; failing to allow for that may cause lacking of the
sense of contribution to the project ultimate goal among those team
members whose voice is ``never heard";

• project manager's awareness of the ``staffing profile" corresponding to the
development process being applied is very important; for example, in
object-oriented development processes it is necessary to have a chief
architect throughout the development project; however, the number and
efforts of system analysts and application engineers necessary to complete

Software Project Management 13

the tasks is rather small in the early phases, and increases significantly in
the later phases of the project;

• planning transition to another development process or another technology
should include an appropriate training of the development team members,
mentoring and guidance among the team members in embracing the new
technology, careful selection of new programming languages and tools,
and strategic decisions related to software reuse;

• effective interpersonal communication is essential to a project’s success,
hence facilitating communication between team members should be a top
priority for the project manager; this may include careful pairing of staff
members and assigning a mediating duty to some other members
according to their experience and technical background;

• every software project manager should pay adequate attention to a
number of ethical issues that always affect the project's success, the
development team, and the team's relations to the customers; such issues
include acting in the customer's and public interest, maintaining integrity
and independence in professional judgement, adhering constantly to the
highest professional standards possible, ensuring lifelong learning and
supporting colleagues, and so on.

Management Strategies and Techniques

Software development is an extremely dynamic and fluid business, and it is
difficult to plan everything at the beginning of a project. Therefore, efficient
management of software projects must be based on some explicit, strategic goals
and organization's interests. There are a number of useful lines to follow in that
sense. Some of them are [3], [23]:
• balancing the need for structure and process control in software

development with the need for flexibility, informality, and more effective
communication processes;

• establishing software measurement programs and and enfocing
accountability for completion of software development milestones;

• making management objectives and product vision clear to the
development team members (this is very importnt in practice, because far
too often developers are in total ignorance of the broader strategy of a
company, and the tactical decisions made by management to advance this
strategy seem to them arbitrary and even hostile);

• identifying the most critical issues of the project and stressing the need to
allocate most development resources, time, and efforts to such issues;

• organizing more visible and formal management processes for reviewing
and approving potential product enhancements;

• emphasizing management approaches that facilitate flexibility and
creativity within clearly defined boundaries;

14 Handbook on Software Engineering & Knowledge Engineering

• keeping-up with technological developments by enforcing life-long
learning, training, courses, and seminars;

• developing more globally focused, culturally sensitive management
capabilities;

• involving end-users in the development process in order to constantly
provide advice on using the product in the real world, thus eliminating the
customer-developer gap;

• promoting orientation towards strategic business partnerships.
There is also a large number of managerial techniques that help monitor

software product development on the day-to-day basis and make tactical
decisions relevant to the development process [1], [3], [23], [41]:
• maintaining progress charts that show the percentage of completion for

each module, at any given moment of product development;
• keeping track of all relevant facts about the product (e.g., previous

versions, delivery dates, current version), the development process (the
problems encountered, resulting delays, and the reasons why they have
occurred), and discarded design alternatives in the external group memory
(it is usually a special-purpose project-management software, or a site on
the organization's server or Intranet, and sometimes even a site on the
Internet); the external group memory can also serve as a board for
discussion on all the relevant ideas that arise in the course of the project;

• estimating time and effort needed for each designer to complete a short-
term task, e.g. an iteration in an iterative development process; for that
purpose, each designer may be required to initially fill-up and constantly
update a planning sheet that contains both the designer's original
estimates and actual measures (in days) of how long does it take to
complete each activity for the task (activities may include analysis,
design, coding, testing, and so on);

• emphasizing progress review mechanisms across the development effort;
• applying mechanisms of recognizing, rewarding, and leveraging

extraordinary efforts and/or hyperproductivity, as an avenue to promote
and retain key technological leaders;

• adapting the software development process to the characteristics of the
product being developed;

• increasing parallelism in product development by reducing linear,
sequential activities, encouraging relevant communication and social
interactions among the team members, and changing the work modes
when necessary;

• insisting on creating multiple design views, such as structural, functional,
object-oriented, event-based, and data-flow; although sometimes
redundant, multiple design views help cover design from multiple
perspectives and make it more complete and more efficient;

Software Project Management 15

• enforcing the feedback mechanism in the development process, in order to
detect inconsistencies in design as early as possible and reduce the costs
of fixing them.

Risk Assessment

In order to prevent project runaways, meet deadlines, stay within the project's
budget, and simultaneously maintain the product's high quality standards, it is
essential to timely identify and periodically evaluate certain critical factors. Such
factors include [1], [10], [29], [30]:
• estimating the project's size in the early phases - the project's size affects

how the deadlines will be set up, and is positively correlated with
monetary expense and risk;

• setting up the deadlines realistically - as a result, the necessary time to
establish the rhythm of the project, prevent delays, and enter a steady state
in which the effort is equally distributed from the beginning of the project,
without putting an extra workload to the team members at the end of the
project phases;

• collecting and studying reports on other similar projects - this provides the
possibility of learning from the other projects' and other teams'
experiences; in that sense, a process data base is essential for an
organization that wants to go higher than Level 2 on the CMM level
ladder; engineering management depends on measurements, and their
proper use, and this data base is to be regarded as an organizational asset,
and it is to be properly managed;

• top management commitment - if top management does not play a strong,
active role in the project from initiation through implementation, then all
other risks and issues may be impossible to address in a timely manner;

• failure to gain user commitment - when the users are actively involved in
the requirements determination process, it creates a sense of ownership,
thereby minimizing the risk that the end-user expectations will not be met
and that the system will be rejected;

• timeliness of additional user requirements - it is essential to have the users
involved in the development process from the beginning to the end;
however, it is highly preferable to have the requirements frozen at a
certain point in development;

• familiarity with technology - the higher the organization’s experience
with application languages, technology databases, hardware, and
operating systems, the lower the risk in the project;

• insufficient/inappropriate staffing - the risk of failing to provide adequate
staffing throughout the project can be mitigated by using disciplined
development processes and methodologies to break the project down into
manageable chunks, and developing contingency plans;

16 Handbook on Software Engineering & Knowledge Engineering

• the degree of structure in the project's outputs - it is negatively correlated
with the risk in the project;
In the context of the Unified Process of software development, it is adopted

that one can never fully eliminate risks; at best, one can manage them [12], [24].
For that reason, the Unified Process stresses the need to drive software
development as an architecture-centric activity. Architecture-centric approach
forces the risk factors to emerge early in the development process and make the
process simultaneously risk-driven - when the risk factors are identified early,
managers can take steps to mitigate them. Experienced software project
managers recommend to maintain a running list of project's top ten risk factors
and use that list to drive each release [12].

Software Metrics

Measurement is a key factor for managing and improving software development.
The purpose of the measurement process in software projects is to define and
operate a context-specific set of metrics, and to describe the required guidelines
and procedures for data collection and analysis [32]. Software measurement
generates quantitative descriptions of key processes and products, enabling us to
understand behavior and result [37]. Such descriptions can indicate the effort
needed to complete the project, the product’s quality, estimated schedules and
time-to-market, rework effort, estimated project costs, and distribution of
resources and costs by project phases. Software measurement makes possible to
compare the project a development team is currently working on, to similar
projects in terms of budget, costs, productivity, quality, staffing, development
processes, and technology used.

In order to operate a metrics program during a software development project,
the project manager must enforce continuous measurement of relevant factors.
These factors depend on the overall management goals of the measurement
process. In that sense, one can differentiate between the following kinds of
software metrics [2], [11], [15], [19], [28], [31], [32], [47]:
• metrics for project size and team productivity – typical and most widely

used representatives of this kind of metrics are source lines of code
(SLOC) and function points; the SLOC metric can be converted relatively
accurately and easily into the number of programer-months needed to
complete the project; function points are dimensionless numbers that
indicate the application’s functionality from the user’s perspective, and
can also be easily converted into the effort needed to complete the project
or one of its parts;

• metrics for schedules – these include the number of tasks completed on
time, the number of tasks not completed on time, the number of tasks with
changed schedules, and the number of postponed tasks;

Software Project Management 17

• metrics for requirements specification – the number of requests for
change (RFC) in specification, the number of new requirements, and the
RFC diagram (showing the dynamics of RFC over time);

• metrics for software testing – these metrics are used to track the
percentage of SLOC covered by the testing process; increasing that
percentage reduces the number of errors to be discovered by the users and
increases the product’s quality;

• metrics for software quality – they typically show the fault density (the
number of errors per 1 KSLOC) and fault arrival and closing rates; as a
rule of thumb, the product’s quality is satisfactory if the fault density is
lower than 0.25;

• metrics for project risk – they measure confidence in the product’s ready-
to-deployment date (typically an S-shaped curve over time).
The most widely used metrics models include COCOMO [11], which is

based on measuring SLOC, function points analysis [2], [19], [28], [47], GQM
(Goal-Question-Metrics, based on systematic translation of the company’s goals
into the measurement process goals, and refinement by defining the concrete
measurements to perform in order to support the goals) [32], and Chidamber-
Kemerer’s metrics suite for object-oriented software projects (specifying metrics
for the number of methods per class, depth of inheritance tree, number of
children, etc.) [15].

Productivity

Generally, productivity is an output divided by the effort required to produce
that output. In software development, the output is a completed software
development project. In order to consider a software company’s productivity, it
is necessary to somehow translate that output into a meaningful measurement.
Ideally, software project managers should base output measurement on a
combination of a project’s size, functionality, and quality [34]. However, such a
measurement doesn’t yet exist.

On the other hand, various databases of software projects from different
business sectors are available nowadays. They make possible to select some
projects that closely resemble specific projects in a software development
organization, and use the selected projects as a reference for measuring the
productivity of the organization’s completed projects or estimating the
productivity of the organization’s new projects.

Alternatively, a company can compare their software development
productivity to that of similar projects analytically, i.e. by using some empirical
benchmarking equations. Such equations typically take the values of some key
productivity factors and use them to calculate productivity in function points per
hour. The values are discrete (1 – very low, 2 – low, 3 – average, 4 – high, 5 –
very high). The key productivity factors include customer participation, staff

18 Handbook on Software Engineering & Knowledge Engineering

availability, the use of standards in software development, the use of tools,
requirements volatility, the application’s logical complexity, staff’s experience
with the tools, and so on. There are also dozens of factors other then the key
ones that also influence productivity. Here are two examples of productivity-
calculation (benchmarking) equations [34]:

Productivity [fp/hr] = 0.1072 x
 (number of different languages used)-0.4627 x
 (staff availability)0.6651

Productivity [fp/hr] = 0.2127 x
 (sum of inquiries)0.1493 x
 (customer participation)-0.3950

It is important to stress that the equations like these two depend on the
customer’s business sector (e.g., banking, insurance, manufacturing, wholesale-
and-retail, and public administration). The first equation from above is used to
calculate productivity in developing software for wholesale-and-retail business,
while the second one corresponds to software development for the public
administration sector. The numbers and the kinds of variables (factors) in
equations are different for different business sectors.

Statistical analysis shows that software development productivity’s variance
with respect to some significant variables (considered individually) is different.
For example, the productivity variance across companies is rather high - 45%,
w.r.t. different operating system it is 19%, and w.r.t. different DBMS tools and
hardware platforms it is 13%. Significant variables are different for different
business sectors, each individual variable’s effect on productivity is either
positive or negative, and each variable accounts for a certain percentage in total
productivity variance. For example, requirements volatility is a significant
variable in most business sectors; its effect on productivity is always negative,
and it accounts for 10% to 19% of total productivity variance across different
business sectors.

Apart from using equations such as the two above for benchmarking
purposes, software project managers can use them to determine the likely impact
on productivity of changes in a key factor.

Software Testing

In spite of the fact that in every software development project the product
undergoes testing, delivered software always contains residual defects. Software
testing is a difficult, time-consuming process. It requires specific skills from
software testers, skills that only partially overlap with those of software
developers. Apart from mastering coding, testers must also possess a great deal
of knowledge of formal languages, graph theory and algorithms [26], [48].

Typically, software testing proceeds in four phases [48]:
• modeling the software’s environment

Software Project Management 19

• selecting test scenarios
• running and evaluating test scenarios
• measuring testing progress

In the first phase, the tester’s task is to simulate the interaction between the
application and its environment, be it the user or the other applications, taking
into account all possible inputs and outputs that can cross the application’s
boundaries. The hardest part here is the fact that in many cases the interactions
can go through numerous different file formats, communication protocols, GUIs,
and file systems. The other hard part is the unpredictability of the user’s actions
– the software under test must account for that.

Since the number of possible test scenarios is usually extremely large, testers
should select those scenarios that cover all code statements and all significant
representatives of external events. Before running the selected scenarios, it is
necessary to convert them into executable form (often as code) in order to
simulate typical interactions between the system and the external world.
Applying test scenarios manually is labor-intensive and error-prone. For that
reason, testers try to automate the test scenarios as much as possible. In many
environments, automated application of inputs through code that simulates users
is possible, and tools are available to help.

Measuring testing progress is difficult, simply because it is not just counting
the numbers of bugs found. As stated in the section on software metrics, specific
metrics for software testing are used to measure the coverage of the tests applied
(in terms of running all lines of the source code, forcing all the internal data to
be initialized and used, applying all test scenarios, exploring all the inputs, and
checking for functional completeness). Note also that software reliability
engineering can greatly help - the Cleanroom methodology developed at IBM
[35] has been particularly useful in improving software quality and providing a
quantitative measure for the quality of a software product at its release. The
Cleanroom approach provides for the transition of process technology to the
project staff and integrates several proven software-engineering practices into
one methodology [46]. The testing strategy of the Cleanroom methodology can
be best described as random sample based on usage model that predicts field
reliability, rather than a futile attempt for coverage and little insight on field
reliability.

If the Unified Process is used to manage software development, software
testing is performed in every iteration [24]. Test scenarios are defined from use
cases, and comprise both functionality and performance testing. The advantage
of this incremental and iterative approach to software testing is that in each
iteration the testers test just some of the application. Moreover, the tests
performed in early phases usually discover such bugs and faults that would
cause more severe instability in the project’s rhythm if they were discovered in
later phases. In every iteration, tests also check whether the current iteration has
jeopardized some of the previously built and tested architecture. If the project’s
size is large, it is impractical to manually run all the test cases, so the use of

20 Handbook on Software Engineering & Knowledge Engineering

automated testing tools is recommended. Project managers should adopt the
practice of enforcing thorough testing in every iteration, and not allowing the
next iteration to begin before all the tests planned in the current iteration are
completed. The entire project is considered completed only when all the UML
models and all the tests are completed and delivered.

Software Quality Assurance

The goals of software quality assurance (SQA) are monitoring the software and
its development process, ensuring compliance with standards and procedures,
and ensuring that product, process, and standards defects are visible to
management [26].

Quality is the operational behavior of a product required by its users [8]. It
comprises a set of product characteristics, both external and internal. External
quality characteristics are related to how the product works in its environment
(e.g., usability and reliability). Internal quality characteristics reflect how the
product is developed (characteristics such as structural complexity, size, test
coverage, and fault rates). Important factors affecting product’s quality
characteristics are process maturity level of the company that has developed the
software product, its development environment (such as the design methodology
and CASE tools used), and the development team’s skill and experience.

It is desirable for a software development organization to plan and control
product quality during development. Projects managers cannot allow the luxury
of going back and adding quality - by the time a quality problem is detected, it is
probably too late to fix it [39]. For that reason, it is necessary to establish
procedures and expectations for high levels of quality before any other
development begins. Also, hiring developers proven to develop high-quality
code, staffing the project accordingly, and enforcing peer-level code reviews and
external reviews must be top priority of every software project management.

Planning and controlling software product quality during development
requires [8]:
• establishing targets for the external quality characteristics;
• pursuing those targets during development by defining and monitoring

targets for internal quality characteristics - this can be done using
conventional software measures of size, fault rates, change rates,
structure, test coverage, and so on, taken early in product development;

• establishing relationships between internal and external quality
characteristics, using experience from similar past software development
projects;

• identifying and setting targets for internal quality characteristics.
In practice, all this can be done by first defining a quality model (in terms of

measurable quality characteristics; it can be an international standard like ISO
9126, or a company-specific model), and then applying a quality process.

Software Project Management 21

Quality process includes quality specification (establishing the software
product’s quality requirements), planning (deciding on a suitable development
process and setting target values for measurable internal quality characteristics),
control (monitoring progress throughout development using internal software
measures associated with deliverables and activities related to each major review
point in development), and evaluation (measuring the actual values of the
external quality characteristics and comparing each actual value with its target
value). Maintaining and using a database of past projects helps perform each
step in the process more successfully.

Software Configuration Management

The configuration of a software system is the function and/or physical
characteristics of hardware, firmware, software or a combination thereof as set
forth in technical documentation and achieved in a product [14]. It can also be
thought of as a collection of specific versions of hardware, firmware, or software
items combined according to specific build procedures to accomplish a
particular purpose [26].

Software configuration management (SCM) comprises a set of technical,
managerial, and administrative activities related to identifying the configuration
of a software system at distinct points in time for the purpose of systematically
controlling changes to the configuration, recording and reporting change
processing and implementation status, verifying compliance with specified
requirements, and maintaining the integrity and traceability of the configuration
throughout the system life cycle [6]. Responsibilities of each software project
manager related to SCM include enforcing the practice of SCM activities for the
project, distributing the activities to the relevant individuals, and managing and
administrating the results of these activities.

Figure 6 illusrtates the activities encompassed by SCM. Since SCM is a
supporting lifecycle process to software product development and maintenance,
a successful SCM implementation requires careful management and planning.
These are typically performed by the project manager or another designated
individual, who does it in close relation with SQA activities. Management and
planning activities cover all the other sets of activities shown in Figure 6,
establish all the relevant SCM policies, and result in recording/updating the
Software Configuration Management Plan (SCMP) for the project. The SCMP is
typically subject to SQA review and audit.

22 Handbook on Software Engineering & Knowledge Engineering

Status
AccountingManagement

and Planning

Control

Management

Development

team

Configuration identification

Release
Processing Auditing

Figure 6 – Software configuration management activities (after [26])

Configuration identification activities provide the basis for other SCM
activities. These activities enumerate the configuration items to be controlled
(such as plans, specifications, source and executable code, code libraries, data
and data dictionaries, testing materials, software tools, and documentation for
installation, maintenance, operations and software use), establish identification
schemes for the items and their versions, and establish the tools and techniques
to be used in acquiring and managing controlled items.

SCM control activities involve both managers and developers. Managers
make decisions on whether some changes in configuration should be made or
not, and authorize the changes. Developers perform change activities (code
management) in a coordinated manner. Status reports are generated that account
for each change in the configuration, and can be of use to various parties in the
project, including managers, developers, testers, SQA team members, and
maintenance engineers. The information obtained by status accounting can also
serve as a basis for various measurements, such as the number of change
requests per software configuration item and the average time needed to
implement a change request. Release processing activities support customers and
the maintenance team. They are related to identification, packaging and delivery
of the elements of a product (such as the software, its documentation, release
notes, and configuration data), as well as product version management (versions
for different platforms or versions with varying capabilities). The software
configuration auditing activity determines the extent to which an item satisfies
the required functional and physical characteristics. Its ultimate goal is to
evaluate the conformance of software products and processes to applicable
regulations, standards, guidelines, plans, and procedures [26].

Standards

There are two major aspects of the term ``standards" in software development.
One of them is that of using widely accepted standards under the assumption that
they embody ``the common body of knowledge and accepted state of industry

Software Project Management 23

best practice" [43]. Such standards include universally recognized control
frameworks for software process control and improvement. Some examples
include ISO 9000, ISO 12207, TickIt, and CMM. They provide a basis for
defining systematic activities, roles, and tasks that can be carried out in software
development, independent of individual projects, companies, or designers.
Furthermore, they make possible to understand and manage all of the diverse
forms of software activity from the standpoint of a single framework. Software
project managers should understand and apply these standards and frameworks
as points of reference in software development, in order to ensure that quality is
being designed and built into the products.

The ISO 9000 series of standards provide a generic model for the Quality
Management System (QMS) of a supplier organization that is involved in design
and development activities. It specifies the requirements against which the
organization’s QMS can be formally assessed. ISO 9000’s issue of particular
interest for software industry is ISO 9000-3 Guideline for the Application of ISO
9001 to the Development, Supply and Maintenance of Software.

The ISO 12207 standard covers the entire lifecycle of software, from
inception through extinction. It details processes for acquiring and supplying
software products and services.

TickIt is the standard related to ISO 9000-3. Its purpose is to fill in the gaps
and clarify the relationship between ISO 9000-3 and ordinary software
development operations. It does this by adding additional documentation and
audit requirements to the ISO 9000-3 Guidelines, and by providing direction
needed to implement ISO 9000-3 compliant quality system.

Software Engineering Institute’s Capability Maturity Model (CMM),
described in the Organizational aspects section does not have a formal status;
hence it is called a model, or a framework, rather than a standard. It is used as a
reference to establish the maturity level of an organization's software processes.

The other aspect of the term ``standards" in software development is that of
deploying organizational standards across the life of a project [38]. In large
organizations, having many software development teams, some standardization
of methods across teams is important. For example, an organization may
prescribe standard (consistent) processes, roles, schedules, and reusability
policies across teams and projects. It can lead to many benefits, including better
planning, more predictable outcomes, increased staffing flexibility (decreased
sensitivity to employee turnover), and reuse of experience.

In that sense, the most important standards are those used for the roles and
processes in a development team. There are many such informal standards.
Some of them are developed internally by a company for its sole use; other
standards are developed and marketed by for-profit companies as products. A
good example is the Microsoft Solutions Framework (MSF), which is used in a
number of software development organizations. It revolves around a team with a
process. The roles it prescribes are product management (focusing on customer
satisfaction), program management (on-time delivery), development, testing,

24 Handbook on Software Engineering & Knowledge Engineering

user education, and logistics planning (smooth rollout and migration). Each role
may be played by a number of different people. The process model describes the
project in terms of phases, milestones, activities, and deliverables. It also shows
how they are related to the team model, and what practices and principles drive
the product development (versioned releases, scheduling for an uncertain future,
managing trade-offs, managing risk, maintaining a fixed ship-date mindset,
breaking large projects into manageable parts, performing daily builds, and
using bottom-up estimating). The process model also defines what documents
each role is expected to deliver at precise points in the iterative process. MSF
provides detailed document templates.

Best Practices

Not every practice of software development can be standardized, yet many of
them have proved to be useful in a number of projects and organizations. Most
of such practices come from experience, and it is extremely beneficial for every
project that the project manager and the members of the development team are
knowledgeable of as many such practices as possible. The following examples
illustrate the idea of using such practices in software project management:
• Communication problems arising when a distributed team is developing

software must be handled with special care. A kick-off meeting must be
held face-to-face, and all the developers, partners, and contractors must
attend. All product deliverables must be clearly defined in the very
beginning. After this the communication between team members is
mostly electronic. Time zones differences are not necessarily a problem –
on the contrary, they may turn out to be an advantage, since by the time
one group of developers comes to work in the morning, the testers may
have already sent them the test results from the other side of the Globe!
Some overlap in working hours is, however, desirable. Establishing
availability standards (when and how the team members will be available
for communication, how quickly they respond to emails, and so on)
facilitates electronic communication in software development done by
distributed teams [22].

• Top-down approach to software analysis and design should be enforced in
software development projects when the application domain is
numerically intensive, such as signal processing, pattern recognition, and
real-time control. The reason is that in such applications the data are not
predictable enough, and developers are usually not familiar enough with
the data. For example, if object-oriented design is used in developing such
an application, then more general classes (located close to the top of the
inheritance tree) should be designed first, and design of their children
classes should come next. Contrary to that practice, developing a
business-oriented application (an information system) suggests bottom-up

Software Project Management 25

approach. Developers of such applications usually know their data well,
and it is quite natural to start the projects from modeling data to be stored
in databases [20]. As for the top-down approach to analysis and design,
note also that it may inhibit reuse. It may be more economical to look at
what reuse and COTS (components-of-the-shelf) software components are
available, and select a design based on them. Such a system may not fully
meet a client's needs, but the client may be happy to accept it on the basis
of its greatly lower cost.

• Productivity of a newly assembled development team should be calibrated
in a pilot project. A small pilot project gives project manager the
possibility of gaining a rough model of performance for every team
member and for the team as a whole before the real work on a large
application begins. Put simply, the work on a pilot project can give a
multiplier factor m, so that if a certain team member estimates to take n
weeks to do something, in reality he/she will need m times n weeks. This
is important for schedule planning for the larger project. How trustworthy
and realistic is the multiplier factor acquired that way depends to a large
extent on whether the application domains of the pilot project and the
larger application are the same or not and whether the team member(s) is
(are) familiar with the domain(s) or not [12].

Discussion and Conclusions

Software project management issues described in this chapter represent the core
of project manager's toolbox for leading the project to its successful completion.
It is important to note that there are many more interesting topics and practices
of software project management, other than those covered here. Due to the
enormous expansion of IT, such practices continue to grow.

Again, if a certain issue specific to software development is not addressed in
the chapter it doesn't mean that it is not important - it is just because it didn't
satisfy some or all of the selection criteria stated in the end of the Introduction.
For example, an important issue for every software project manager is
contingency planning. It relates to the effect of strikes by personnel, fire,
flooding, earthquakes, each of which can have a rather specific effect on the
software process - copies of work products are to be kept off site, and be easily
accessible. However, contingency planning doesn't get that much space in the
relevant software engineering journals and magazines, or in the publications of
the relevant committees associations.

Another such important issue is that of how the business reengineering
efforts (reorganization of an entire enterprise) have, or should have, affected the
management of software projects [17]. Recent results in that sense include
reengineering of software enterprises in order to introduce CMM [7]. These
efforts aim at reengineering of a software enterprise based on introducing some

26 Handbook on Software Engineering & Knowledge Engineering

important principles into the organization, in terms of very general statements of
what engineers do (e.g., software development follows a plan in accordance with
requirements, requirements are ranked according to cost-effectiveness and are
implemented incrementally, standards are used in development, design includes
fault- and failure-tolerance, and so on). The principles are consistent with the
capabilities that CMM recognizes as supportive of and important in the
development of high quality software.

However, it is important to stress that even if all of the important practices
and issues could be briefly covered here, software project management in reality
requires a more detailed insight into the practices themselves and many case
studies, as well as a lot of experience, judgment, and intuition. Experienced
managers always take the issues and practices reported in the open literature just
as rough guidelines and adapt them to the context of their current project. This
suggests an important general rule of thumb: best practices of software project
management are always those that can be applied to the system being built, the
technology the developers use, and the organization that develops the system.

Software Project Management Topics on the Web

There are many software project management resources on the Web. The short
list of URLs shown below has been composed according to the following
criteria:

• the number of useful links following from that URL
• how comprehensive the site is
• how interesting the URL is for software project managers
• how interesting the URL is for practitioners and researchers

• Software Engineering Institute (SEI):
 http://www.sei.cmu.edu

This is one of the best starting points for all software engineering topics,
including software project management. It includes a number of links to
relevant on-line literature, conferences, and other resources.

• The International Conference on Software Engineering (ICSE):
 http://www.ul.ie/~icse2000

ICSE is the largest software engineering conference. The topics cover all
aspects of software engineering, including software project management.
The program attracts both practitioners and researchers.

• The Unified Process
 http://www.rational.com/products/rup/index.jtmpl

The Rational Software Corp. site contains various resources related to UML
and Unified Process.

• Extreme Programming
 http://www.extremeprogramming.org/

Software Project Management 27

eXtreme programming is a methodology designed to address the specific
needs of small-team software development, facing vague and changing
requirements.

• Requirements Engineering:
 http://www.cs.ucl.ac.uk/research/renoir/

This is the site of Renoir, the European Union Requirements Engineering
Network of Excellence.

• Software Metrics:
 http://www.udmercy.edu/academic/business/metrics.htm

A number of links and resources related to software metrics.
• Productivity:
 http://www.sttf.fi/html/exppro.html

Experience Pro, a tool incorporating the Experience database of software
projects comprising data collected from companies operating in different
business sectors. The data can be used for preliminary project planning,
including cost estimation, reuse analysis, software-process-capability
analysis, risk analysis, and productivity benchmarking.

• Software Testing:
 http://www.io.com/~wazmo/qa

An annotated list of links to some of the Web’s best testing information.
• Organization’s internal standards:
 http://www.microsoft.com/msf/

Microsoft Solutions Framework (MSF) that prescribes software
development process model, principles, practices and roles to deploy
consistently across development teams in a company.

References
1. Ahituv, N., Zviran, M., Glezer, C., Top Management Toolbox for Managing

Corporate IT. Communications of The ACM 42, April 1999, pp. 93-99.
2. Albrecht, A.J., Gaffney, J.E., Software Function, Source Lines of Code, and

Development Effort Prediction: A Software Science Validation. IEEE Transactions
on Software Engineering 9, 1983, pp. 639–648.

3. Athey, T., Leadership Challenges For the Future. IEEE Software 15, May/June
1998, pp. 72-77.

4. Beck, K., eXtreme Programming Explained: Embrace Change. Reading: Addison-
Wesley, 2000.

5. De Bellis, M., Haapala, C., User-Centric Software Engineering. IEEE Expert 10,
February 1995, pp. 34-41.

6. Bersoff, E.H., Elements of Software Configuration Management. In: Dorfman, M.,
Thayer, R.H. (eds), Software Engineering. Los Alamitos: IEEE Computer Society
Press, 1997, pp. 345-356.

7. Berztiss, A., Software Methods for Business Reengineering. New York: Springer,
1996.

28 Handbook on Software Engineering & Knowledge Engineering

8. Boegh, J., Depanfilis, S., Kitchenham, B., Pasquini, A., A Method for Software
Quality Planning, Control, and Evaluation. IEEE Software 16, March/April 1999,
pp. 69-77.

9. Boehm, B., A Spiral Model of Software Development and Enhencement. IEEE
Computer 21, May 1988, pp. 61-72.

10. Boehm, B.W. Software Risk Management: Principles and Practices. IEEE Software
8, January 1991, pp. 32–41.

11. Boehm, B.W., et al., Cost Models for Future Life Cycle Processes: COCOMO 2.0.
Annals of Software Engineering 1, November 1995, pp. 1-24.

12. Booch, G., Object Solutions - Managing the Object-Oriented Software Project.
Reading: Addison-Wesley, 1996.

13. Booch, G., Rumbaugh, J., Jacobson, I., Unified Modelling Language User's Guide.
Reading: Addison-Wesley, 1999.

14. Buckley, F.J., Implementing Configuration Management: Hardware, Software, and
Firmware (Second Edition). Los Alamitos: IEEE Computer Society Press, 1996.

15. Chidamber, S.R., Kemerer, C.F., A Metrics Suite for Object-Oriented Design. IEEE
Transactions on Software Engineering 20, 1994, pp. 476-493.

16. Constantine, L.L., Work Organization: Paradigms for Project Management and
Organization. Communications of The ACM 36, October 1993, pp. 35-43.

17. Davenport, T.H., Process Innovation: Reengineering Work through Information
Technology. Boston: Harvard Business School Press, 1993.

18. Davis, A.M., Hsia, P., Giving Voice to Requirements Engineering. IEEE Software
11, March 1994, pp. 12-17.

19. Deveaux, P., Counting function points. In: Keyes, J. (ed.), Software Engineering
Productivity Handbook. New York: McGraw-Hill, 1993, pp. 191-227.

20. Fayad, M.E., Cline, M., Managing Object-Oriented Software Development. IEEE
Computer 29, September 1996, pp. 26-32.

21. Ferdinandi, P.L., Facilitating Communication. IEEE Software 15,
September/October 1998, pp. 92-96.

22. Haywood, M., Working in Virtual Teams: A Tale of Two Projects and Many Cities.
IEEE IT Professional 2, March/April 2000, pp. 58-60.

23. Holtzblatt, K., Beyer, H., Making Customer-Centered Design Work for Teams.
Communications of The ACM 36, October 1993, pp. 92-104.

24. Jacobson, I., Booch, G., Rumbaugh, J., The Unified Software Development Process.
Reading: Addison-Wesley, 1999.

25. Jarke, M., Requirements tracing. Communications of The ACM 41, December 1998,
pp. 32-35.

26. Joint IEEE/CS-ACM Committee, Guide to the Software Engineering Body of
Knowledge - SWEBOK. http://www.swebok.org/, December 2000.

27. Joint IEEE/CS-ACM Committee, Software Engineering Code of Ethics.
www.acm.org/serving/se/code.htm, December 2000.

28. Jones, C., Applied Software Measurement. New York: McGraw-Hill, 1991.
29. Jones, C., Our Worst Current Development Practices. IEEE Software 12, March

1996, pp. 102-104.
30. Keil, M., Cule, P.E., Lyytinen, K., Schmidt, R.C., A Framework for Identifying

Software Project Risks. Communications of The ACM 41, November 1998, pp. 76-
83.

31. Kulik, P., A Practical Approach to Software Metrics. IEEE IT Professional 2,
January/February 2000, pp. 38-42.

32. Lavazza, L., Providing Automated Support for the GQM Measurement Process".
IEEE Software 17, May/June 2000, pp. 56-62.

Software Project Management 29

33. Lindvall, M., Rus, I., Process Diversity in Software Development. IEEE Software
17, July/August 2000, pp. 14-18.

34. Maxwell, K.D., Forselius, P., Benchmarking Software Development Productivity.
IEEE Software 17, January/February 2000, pp. 80-88.

35. Mills, H.D., Dyer, M., Linger, R.C., Cleanroom Software Engineering. IEEE
Software 4, September 1987, pp. 19-24.

36. Paulk, M.C., et al., The Capability Maturity Model: Guidelines for Improving the
Software Process. Reading: Addison-Wesley, 1995.

37. Pfleeger, S.L., Jefferey, R., Curtis, B., Kitchenham, B., Status Report on Software
Measurement. IEEE Software 14, March/April 1997, pp. 33-43.

38. Rada, R., Craparo, J., Standardizing Software Projects. Communications of The
ACM 43, December 2000, pp. 21-25.

39. Reel, J.S., Critical Success Factors In Software Projects. IEEE Software 16,
May/June 1999, pp. 18-23.

40. Reifer, D.J., Requirements Management: The Search for Nirvana. IEEE Software
17, May/June 2000, pp. 45-47.

41. Rettig, M., Simons, G., A Project Planning and Development Process for Small
Teams. Communications of The ACM 36, October 1993, pp. 45-55.

42. Shaw, M., Garlan, D., Software Architecture: Perspectives on an Emerging
Discipline. Englewood Cliffs: Prentice Hall, 1996.

43. Shoemaker, D., Jovanovic, V., Engineering a Better Software Organization. Ann
Arbor: Quest Publishing House, 1999.

44. Siddiqi, J., Challenging Universal Truths of Requirements Engineering. IEEE
Software 11, March 1994, pp. 18-20.

45. Software Engineering Institute's CMMI Product Development Team, CMMI-SM for
Systems Engineering/Software Engineering, Version 1.02, Continuous
Representation (CMU/SEI-2000-TR-019).
http://www.sei.cmu.edu/pub/documents/00.reports/pdf/00tr019.pdf, 2000.

46. Wayne Sherer, S., Kouchakdjian, A., Arnold, P.G., Experience Using Cleanroom
Software Engineering. IEEE Software 13, May 1996, pp. 69-76.

47. Whitmire, S.A., Applying function points to object-oriented software models. In:
Keyes, J. (ed.), Software Engineering Productivity Handbook. New York: McGraw-
Hill, 1993, pp. 229-244.

48. Whittaker, J.A., What Is Software Testing? And Why Is It So Hard? IEEE Software
17, January/February 2000, pp. 70-79.

49. Woodward, S., Evolutionary Project Management. IEEE Computer 32, October
1999, pp. 49-57.

50. Zahniser, R.A., Design By Walking Around. Communications of The ACM 36,
October 1993, pp. 115-123.

