
Scheduling

As cloud computing is serving millions of users
simultaneously, it must have the ability to meet all users
requests with high performance and guarantee of quality of
service (QoS). Therefore, we need to implement an
appropriate task scheduling algorithm to fairly and efficiently
meet these requests. Task scheduling problem is the one of
the most critical issues in cloud computing environment
because cloud performance depends mainly on it.

The concept of scheduling in cloud computing refers to the
technique of mapping a set of jobs to a set of virtual
machines (VMs) or allocating VMs to run on the available
resources in order to fulfill users' demands.

Concepts of Scheduling

• Scheduling is the process of mapping
and managing tasks or processes into
available resources.

• FCFS
• Shortest Job First
• Min-Min
• Max-Min

• CPU gets a lot of processes to handle. Consider a CPU and
also consider a list in which the processes are listed as
follows:-

• Here, Process Number is used instead of the process name
• Arrival Time is the time when the process has arrived the

list.
• Burst Time is the amount of time required by the process

from CPU.
• Unit of time you can take anything like nano-second,

second, minute etc whatever. We consider it as second.

Process
No

Arrival
Time

Burst Time

1 0 3
2 1 2
3 2 1

• Now for an instance, consider the above list as the ready
queue for the CPU, that is the CPU will take processes
from this list and will process it.

• Here in FCFS, CPU will take the first process in the list and will
process it, then it will take the second process and so on. So
this is a very easy thing to do huh ! Ok. So, lets see what CPU
is doing,

• At Time 0s Doing 1s time Unit Job of Process-1, so Process-1 has left 2s Time Unit Job
• At Time 1s Doing 1s time Unit Job of Process-1, so Process-1 has left 1s Time Unit Job
• At Time 2s Doing 1s time Unit Job of Process-1, so Process-1 has left 0s Time Unit Job
• At Time 3s Doing 1s time Unit Job of Process-2, so Process-2 has left 1s Time Unit Job
• At Time 4s Doing 1s time Unit Job of Process-2, so Process-2 has left 0s Time Unit Job
• At Time 5s Doing 1s time Unit Job of Process-3, so Process-3 has left 0s Time Unit Job

We can show the above thing as the following time-line

0s 1s 2s 3s 4s 5s

Process-1 Process-1 Process-1 Process-2 Process-2 Process-3

• A shortened view of the above time-line is as follows,

| Process-1 |
Process-2

|
Process-3

|

60 3 5

Pr# Arr
Time

Burst Time

1 0 3
2 1 2
3 2 1

Process-1 Process-1 Process-1 Process-2 Process-2 Process-3

Advantages

• Most popular and simplest scheduling algorithm.

• Fairer than other simple scheduling algorithms.

• Depend on FIFO rule in scheduling task.

• Less complexity than other scheduling algorithms.

Disadvantages

• Tasks have high waiting time.

• Not give any priority to tasks. That means when we have large tasks in the
begin tasks list, all tasks must wait a long time until the large tasks to
finish.

• Resources are not consumed in an optimal manner.

.

• This method is quite same as the FCFS but the difference is
the in this case the processor will not process the jobs
(processes) as they will come.

• Instead, a scheduler after a complete cycle (consider this as
a 1 second job done) will check which is the job with the
shortest burst time right now and will work on that. Now
consider a CPU and also consider a list in which the
processes are listed as follows:

Process
No

Arrival
Time

Burst Time

1 0 3
2 1 2
3 2 1

AT 0s:
There is only 1 job that is Process-1 with burst time 3. So
CPU will do 1 second job of Process-1. Thus Process-1 has 2s
more job to be done.

AT 1s:
Now there are 2 jobs,

•
•

Process-1 that arrived at 0s and has 2s job to be done.
Process-2 that arrived at 1s and has 2s job to be done.

So as both of the jobs as equal amount of jobs to be done,
CPU will do the job that arrived earlier, that is 1s job of
Process-1. So process-1 has more 1s job.

• The scheduler after a complete cycle (consider this as a 1
second job done) will re-evaluate the situation and
determine which is the job with the shortest burst time
right now and will work on that.

• This comparison of burst time includes the new jobs
arrived and the pending jobs which have already started.

• If the duration for any two jobs (time to be completed) are
equal, then prefernce is given to the one who arrived
earlier.

AT 2s:
Now there are 3 jobs,

•
•
•

Process-1 that arrived at 0s and has 1s job to be done.
Process-2 that arrived at 1s and has 2s job to be done.
Process-3 that arrived at 2s and has 1s job to be done.

Here, 2 jobs has the shortest amount of job to be
done, that is 1s. Both Process-1 and Process-3 has 1s job.
CPU will do the job that arrived earlier, that is 1s job of
Process-1. So process-1 has more 0s job.

AT 3s:
Now there are 2 jobs,
•
•

Process-2 that arrived at 1s and has 2s job to be done.
Process-3 that arrived at 2s and has 1s job to be done.

Here, Process-3 has the shortest amount of job to be
done, that is 1s. CPU will do 1s job of Process-3. So process-
3 has more 0s job.

AT 4s:
There is only 1 job, that is Process-2 with burst time 2. So

CPU will do 1 second job of Process-2. Thus Process-2 has 1s
more job to be done.

AT 5s:

• There is only 1 job, that is Process-2 with burst time 1. So
CPU will do 1 second job of Process-2. Thus Process-2 has 0s
more job to be done.

• All Job Done.
We can show the above thing as the following time-line

0s 1s 2s 3s 4s 5s

A shortened view of the above time-line is as follows,

Process-1 Process-1 Process-1 Process-3 Process-2 Process-2

Pr 1 Pr 3 Pr 2

0s 3s 4s 6s

Example-2

Advantages
Wait time is lower than FCFS.

SJF has minimum average waiting time among all tasks
scheduling algorithms.

 Disadvantages
Unfairness to some tasks when tasks are assigned to VM,
due to the long tasks tending to be left waiting in the task
list while small tasks are assigned to VM.

Taking long execution time and TFT.

3

• For each task, determine its minimum completion time over all
machines.

• Over all tasks, find the minimum completion time (min
of all mins)

• Assign that task to the machine that gives this completion
time(min-min)

• Iterate till all the tasks are scheduled

• For each task, determine its minimum completion time over all
machines

• Over all tasks, find the maximum completion time (max
of all mins)

• Assign the task to the machine that gives this completion time
• Iterate till all the tasks are scheduled

Stage 1: Stage 2:

T1-M2 = 100 (min)

T3-M2 = 70 (min)

Stage 3:

T1-M1 = 160 (min)T1-M2 = 100 (min)

T2-M1 = 20 (min)

T3-M1 = 60 (min)

Assign T2 to
M1(min-min)

20

 M1 T2

Assign T3 to
M2(min-min)

Assign T1 to M1
160

T3
T1

70

T1 T2 T3

M1 140 20 60

M2 100 100 70

T1 T3

M1 140+20
=160

60+20
=80

M2 100 70

T1

M1 160

M2 100+70
=170

M2

Stage 1: Stage 2:

T2-M1 = 20 (min)

T3-M1 = 60 (min)

Stage 3:

T2-M1 = 80 (min)T1-M2 = 100(min)

T2-M1 = 20(min)

T3-M1 = 60(min)

Assign T1 to
M2(max-min)

Assign T2 to M1

T3
T1

Assign T3 to
M1(max-min)

60 80

T2M1
M2

100

T1 T2 T3

M1 140 20 60

M2 100 100 70

T2 T3

M1 20 60

M2 100+100
=200

70+100
=170

T2

M1 20+60
=80

M2 200

