Wiley Precise Textbook Series
Big Data Analytics

Radha Shankarmani
M. Vijayalakshmi

Big Data Analytics

Big Data Analytics

Dr. Radha Shankarmani
Prof. & HOD, Dept. of Information Technology,
Sardar Patel Institute Of Technology,
Affiliated to Mumbai University,
Andheri-West, Mumbai

Dr. M. Vijayalakshmi
Professor, Department of Information Technology, VESIT
Vivekanand Education Society Institute of Technology,
Affiliated to Mumbai University

WILEY

Big Data Analytics

Copyright © 2016 by Wiley India Pvt. Ltd., 4435-36/7, Ansari Road, Daryaganj, New Delhi-110002.
Cover Image: © yienkeat/Shutterstock

All rights reserved. No part of this book maybe reproduced, stored in aretrieval system, or transmittedin any form orby any means,
electronic, mechanical, photocopying, recording or scanning without the written permission of the publisher.

Limits of Liability: While the publisherand the authorhave used their besteffortsin preparingthisbook, Wileyand the author make
no representation or warranties with respect to the accuracy or completeness of the contents of this book, and specifically disclaim
any implied warranties of merchantability or fitness for any particular purpose. There are no warranties which extend beyond the
descriptions contained in this paragraph. No warranty may be created or extended by sales representatives or written sales materials.
The accuracyand completenessof the information provided herein and the opinions stated herein are not guaranteed or warranted to
produce any particular results, and the advice and strategies contained herein may not be suitable for every individual. Neither Wiley
India nor the author shall be liable for any loss of profit or any other commercial damages, including but not limited to special,
incidental, consequential,orother damages.

Disclaimer: The contents of this book have been checked for accuracy. Since deviations cannot be precluded entirely, Wiley or its
author cannot guarantee full agreement. As the book is intended for educational purpose, Wiley or its author shall not be responsible
for any errors, omissions or damages arising out of the use of the information contained in thebook. This publication is designed to
provide accurate and authoritative information with regard to the subject matter covered. It is sold on the understanding that the
Publisheris notengagedin rendering professional services.

Trademarks: All brand names and product names used in this book are trademarks, registered trademarks, or trade names of their
respective holders. Wileyis notassociated withany productorvendormentionedin thisbook.

Other Wiley Editorial Offices:

JohnWiley & Sons,Inc. 111 River Street, Hoboken, NJ 07030, USA

Wiley-VCH Verlag GmbH, Pappellace 3, D-69469 Weinheim, Germany

JohnWiley & Sons Australial.td, 42 McDougall Street, Milton, Queensland 4064, Australia
JohnWiley & Sons (Asia) Pte Ltd, 1 Fusionopolis Walk #07-01 Solaris,South Tower, Singapore 138628
JohnWiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada, MOW 111

Edition: 2016

ISBN: 978-81-265-5865-0
ISBN: 978-81-265-8224-2 (ebk)
www.wileyindia.com

Printedat:

Dedicated to my husband, Shankaramani,
and son Rohit who were kind enough to
understand my busy schedule and patiently waited
for a holiday together.

—Radbha Shankarmani

Dedicated to my family who steadfastly supported me and
my crazy schedule during the montbs of writing this book —
my mother-in-law Mrs G. Sharada, my husband G. Murlidhar and
my elder son Goutam. A special dedication to Pranav my long
suffering younger son, whose computer I hijacked to speedup
my writing for the last two montbs.

—M. Vijayalakshmi

Preface

Importance of Big Data Analytics

The recent explosion of digital data has made organizations to learn more about their businesses, and
directly use that knowledge for improved decision making and performance. When shopping moved
online, understanding of customers by business managers increased tremendously. E-business not only
could track what customers bought, but also track the way they navigated through the site; how much
they are influenced by price discounts; review of products bought by their family and friends. The
whole look and feel of the contents and its organization in the site is valuable. This information was
not available to business managers a decade ago, and the sale-predictions were restricted to the buying
pattern of their customers by looking into their past records.

What is New in Analytics?

Analytics can be reactive or proactive. In traditional methods, reactive analytics are done through busi-
ness intelligence tools and OLAP. For proactive analytics techniques like optimization, predictive mod-
eling, text mining, forecasting and statistical analysis are used. But these tools and techniques cannot

be used for Big Data Analytics.

In case of big data, volume, variety and velocity are the three main drivers that gave a new dimen-
sion to the way analytics had to be performed. For instance, in Walmart, data collected cross the Inter-
net every hour from its customer transactions is in the range of petabyes. The speed in which data is
created is more important than the volume. Real-time or nearly real-time analysis makes a company
more agile to face the demand and competitions. For example, a lot of decisions have to be made in
real time during the sale on Thanksgiving day. Big data takes the form of messages and images posted
to social networks; readings from sensors; GPS signals from cell phones; and more. There is huge vol-
ume and variety of information available from social networks, namely Facebook and Twitter. Mobile
devices provide streams of data related to people, activities and locations. All the above said data are
unstructured and so cannot be stored in structured databases.

To process large amount of unstructured data, technologies and practices were developed. The first
step is to fragment such data and store it in a cluster of commodity servers. Here computing is moved
to data and not otherwise. The activities of the commodity servers are coordinated by an open-source

viii o PREFACE

software framework called Hadoop. A NoSQL database is used to capture and store the reference data
that are diverse in format and also change frequently.

With the advent of Big Data, applying existing traditional data mining algorithms to current real-
world problems faces several tough challenges due to the inadequate scalability and other limitations of
theses algorithms. The biggest limitation is the inability of these existing algorithms to match the three
Vs of the emerging big data. Not only the scale of data generated today is unprecedented, the produced
data is often continuously generated in the form of high-dimensional streams which require decisions
just in time. Further, these algorithms were not designed to be applicable to current areas like web based
analytics, social network analysis, etc.

Thus, even though big data bears greater value (i.e., hidden knowledge and more valuable insights),
it brings tremendous challenges to extract these hidden knowledge and insights from big data since
the established process of knowledge discovering and data mining from conventional datasets was not
designed to and will not work well with big data.

One solution to the problem is to improve existing techniques by applying massive parallel process-
ing architectures and novel distributed storage systems which help faster storage and retrieval of data.
But this is not sufficient for mining these new data forms. The true solution lies in designing newer and
innovative mining techniques which can handle the three V’s effectively.

Intent of the Book

The book focuses on storage and processing of Big Data in the first four chapters and discusses newer
mining algorithms for analytics in the rest of the chapters.

The first four chapter focus on the business drivers for Big Data Analytics, Hadoop distributed file
system, Hadoop framework and Hadoop eco-systems. The four main architectural patterns for storing
Big Data and its variations are also discussed.

The latter chapters cover extensions and innovations to traditional data mining like clustering and
frequent itemset mining. The book further looks at newer data forms like web-based data, social net-
work data and discusses algorithms to effectively mine them. One popular practical application of Big
Data Analytics, Recommendations systems, is also studied in great detail.

Journey of the Reader

The book takes through the theoretical and practical approach to teaching readers the various concepts
of Big Data management and analytics. Readers are expected to be aware of traditional classification,
clustering and frequent pattern mining based algorithms. The laboratory exercises are given at the end
of relevant chapters will help them to perform laboratory exercises. The readers are expected to have
knowledge of database management and data mining concepts. The review questions and/or exercises

PREFACE e iIX

given at the end of the chapters can be used to test the readers understanding of the content provided
in the chapter. Further, a list of suggested programming assignments can be used by a mature reader to
gain expertise in this field.

Organization of the Book

1. Chapter 1 contains introduction to Big Data, Big Data Characteristics, Types of Big Data, com-
parison of Traditional and Big Data Business Approach, Case Study of Big Data Solutions.

2. Chapter 2 contains introduction to Hadoop, Core Hadoop Components, Hadoop Ecosystem,
Physical Architecture, and Hadoop Limitations.

3. Chapter 3 discusses about No SQL, NoSQL Business Drivers, Case Studies on NoSQL, No
SQL Data Architecture Patterns, Variations of NoSQL Architectural Patterns, Using NoSQL
to Manage Big Data, Understanding Types of Big Data Problems, Analyzing Big Data with a

Shared-Nothing Architecture, Choosing Distribution Models, Master-Slave vs Peer-to-Peer, the
way NoSQL System Handles Big Data Problems.

4. Chapter 4 covers MapReduce and Distributed File Systems; Map Reduce: The Map Tasks and
The Reduce Tasks; MapReduce Execution, Coping with Node Failures, Algorithms Using
MapReduce: Matrix-Vector Multiplication and Relational Algebra operations.

5. Chapter 5 introduces the concept of similarity between items in a large dataset which is the
foundation for several big data mining algorithms like clustering and frequent itemset mining.
Different measures are introduced so that the reader can apply the appropriate distance measure
to the given application.

6. Chapter 6 introduces the concept of a data stream and the challenges it poses. The chapter
looks at a generic model for a stream-based management system. Several Sampling and Filtering
techniques which form the heart of any stream mining technique are discussed; among them the
popularly used is Bloom filter. Several popular steam-based algorithms like Counting Distinct
Elements in a Stream, Counting Ones in a Window, Query Processing in a Stream are discussed.

7. Chapter 7 introduces the concept of looking at the web in the form of a huge webgraph. This
chapter discusses the ill effects of “Spam” and looks at Link analysis as a way to combat text bead
“Spam”. The chapter discusses Google’s PageRank algorithm and its variants in detail. The alter-
nate ranking algorithm HITS is also discussed. A brief overview of Link spam and techniques to
overcome them are also provided.

8. Chapter 8 covers very comprehensively algorithms for Frequent Itemset Mining which is at the
heart of any analytics effort. The chapter reviews basic concepts and discusses improvements to
the popular A-priori algorithm to make it more efficient. Several newer big data frequent itemset
mining algorithms like PCY, Multihash, Multistage algorithms are discussed. Sampling-based

PREFACE

10.

11.

12.

13.

14.

algorithms are also dealt with. The chapter concludes with a brief overview of identifying fre-
quent itemsets in a data stream.

Chapter 9 covers clustering which is another important data mining technique. Traditional clus-
tering algorithms like partition-based and hierarchical are insufficient to handle the challenges
posed by Big Data clustering. This chapter discusses two newer algorithms, BFR and CURE,
which can cluster big data effectively. The chapter provides a brief overview of stream clustering.

Chapter 10 discusses Recommendation Systems, A Model for Recommendation Systems, Con-
tent-Based Recommendations and Collaborative Filtering.

Chapter 11 introduces the social network and enumerates different types of networks and their
applications. The concept of representing a Social Network as a Graph is introduced. Algorithms
for identifying communities in a social graph and counting triangles in a social graph are dis-
cussed. The chapter introduces the concept of SimRank to identify similar entities in a social
network.

Appendix: This book also provides a rather comprehensive list of websites which contain open
datasets that the reader can use to understand the concept and use in their research on Big Data
Analytics.

Additionally each chapter provides several exercises based on the chapters and also several pro-
gramming assignments that can be used to demonstrate the concepts discussed in the chapters.

References are given for detail reading of the concepts in most of the chapters.

Audience

This book can be used to teach a first course on Big Data Analytics in any senior undergraduate or
graduate course in any field of Computer Science or Information Technology. Further it can also be
used by practitioners and researchers as a single source of Big Data Information.

Acknowledgements

First and foremost, I would like to thank my mother for standing beside me throughout my career and
writing this book. My sincere thanks to Principal, Dr. Prachi Gharpure, too. She has been my inspira-
tion and motivation for continuing to improve my knowledge and move my career forward. My thanks
to ML.E. research students in writing installation procedures for laboratory exercises.

Radbha Shankarmani

Several people deserve my gratitude for their help and guidance in making this book a reality. Foremost
among them is Prof. Radha Shankaramani, my co-author who pushed and motivated me to start this
venture. My sincere thanks to my principal Dr. J.M. Nair (VESIT) who has supported me full heart-
edly in this venture. My thanks to Amey Patankar and Raman Kandpal of Wiley India for mooting the
idea of this book in the first place.

M. Vijayalakshmi

Together,
We would like to express our gratitude to the many people who inspired us and provided support.

Our sincere thanks to the Dean, Ad hoc Board of Studies, Information Technology, Dr. Bakal
for introducing the course in under graduate program and providing us an opportunity to take this
venture. Our sincere thanks to the publishers, Wiley India and the editorial team for their continuing

support in publishing this book.
Radha Shankarmani
M. Vijayalakshmi

About the Authors

Dr. Radha Shankarmani is currently working as Professor and Head at
Department of Information Technology, Sardar Patel Institute of Technology,
Mumbai. Her areas of interest include Business Intelligence, Software
Engineering, Software Testing, Databases, Data Warehousing and Mining,
Computer Simulation and Modeling, Management Information System and
SOA. Dr. Radha Shankarmani holds a PhD degree from JNTUH; Masters
degree in Computer Science and Engineering from NIT, Trichy and Bachelors
degree from PSG College of Technology in Electronics and Communication

Engineering. She has more than 20 years of teaching experience and 4 years of industry experience

where she has held designations such as Programmer, Software Engineer and Manager. She did her
sabbaticals for two months in Infosys, Pune in 2005 and has published a number of papers in National,

International conferences and International journal.

Dr. M. Vijayalakshmi is Professor of Information Technology at VES Institute
of Technology Mumbai. Currently she is also the Vice Principal of the college.
She has more than 25 years of teaching experience both at undergraduate
and postgraduate engineering level. Dr. M. Vijayalakshmi holds a Master of
Technology and Doctorate Degree in Computer Science and Engineering
from the Indian Institute of Technology Mumbai, India. During her career
at VESIT, she has served on syllabus board of Mumbai University for BE of

Computer Science and Information Technology departments. She has made

several contributions to conferences, national and international in the field of Data Mining, Big Data

Analytics and has conducted several workshops on data mining related fields. Her areas of research

include Databases, Data Mining, Business Intelligence and designing new algorithms for Big Data

Analytics.

Contents

Preface vii
Acknowledgements xi
Chapter 1 Big Data Analytics 1
Learning Objectives 1
1.1 Introduction to Big Data 1
1.1.1 So What is Big Data? 1

1.2 Big Data Characteristics 2
1.2.1 Volume of Data 2

1.3 Types of Big Data 3

1.4 Traditional Versus Big Data Approach 4
1.4.1 Traditional Data Warehouse Approach 4

1.4.2 Big Data Approach 5

1.4.3 Advantage of “Big Data” Analytics 5

1.5 Technologies Available for Big Data 6

1.6 Case Study of Big Data Solutions 7
1.6.1 Case Study 1 7

1.6.2 Case Study 2 7
Summary 8
Exercises 8
Chapter 2 Hadoop 11
Learning Objectives 11
2.1 Introduction 11

Xiv o

CONTENTS

2.2 What is Hadoop? 11
2.2.1 Why Hadoop? 12

2.2.2 Hadoop Goals 12

2.2.3 Hadoop Assumptions 13

2.3 Core Hadoop Components 13
2.3.1 Hadoop Common Package 14

2.3.2 Hadoop Distributed File System (HDFYS) 14

2.3.3 MapReduce 16

2.3.4 Yet Another Resource Negotiator (YARN) 18

2.4 Hadoop Ecosystem 18
2.4.1 HBase 19

2.4.2 Hive 19

2.4.3 HCatalog 20

244 Pig 20

2.4.5 Sqoop 20

2.4.6 Qozie 20

2.4.7 Mahout 20

2.4.8 ZooKeeper 21

2.5 Physical Architecture 21
2.6 Hadoop Limitations 23
2.6.1 Security Concerns 23

2.6.2 Vulnerable By Nature 24

2.6.3 Not Fit for Small Data 24

2.6.4 Potential Stability Issues 24

2.6.5 General Limitations 24
Summary 24
Review Questions 25
Laboratory Exercise 25
Chapter 3 'What is NoSQL: 37
Learning Objectives 37
3.1 Whatis NoSQL? 37
3.1.1 Why NoSQL? 38

3.1.2 CAP Theorem 38

CONTENTS XV
3.2 NoSQL Business Drivers 38
3.2.1 Volume 39

3.2.2 Velociry 39

3.2.3 Variability 40

3.2.4 Agility 40

3.3 NoSQL Case Studies 42
3.3.1 Amazon DynamoDB 42

3.3.2 Googles Biglable 43

3.3.3 MongoDB 44

3.3.4 Neodj 44

3.4 NoSQL Data Architectural Patterns 45
3.4.1 Types of NoSQL Data Stores 45

3.5 Variations of NoSQL Architectural Patterns 50
3.6 Using NoSQL to Manage Big Data 51
3.6.1 What is a Big Data NoSQL Solution? 51

3.6.2 Understanding Types of Big Data Problems 53

3.6.3 Analyzing Big Data with a Shared Nothing Architecture 54

3.6.4 Choosing Distribution Models 54

3.6.5 Four Ways that NoSQL System Handles Big Data Problems 55
Summary 58
Review Questions 58
Laboratory Exercise 59
Chapter 4 MapReduce 69
Learning Objectives 69
4.1 MapReduce and The New Software Stack 69
4.1.1 Distributed File Systems 70

4.1.2 Physical Organization of Compute Nodes 71

4.2 MapReduce 75
4.2.1 The Map 1asks 76

4.2.2 Grouping by Key 76

4.2.3 The Reduce Tasks 76

4.2.4 Combiners 76

4.2.5 Details of MapReduce Execution 78

4.2.6 Coping with Node Failures 80

XVi o CONTENTS
4.3 Algorithms Using MapReduce 81
4.3.1 Matrix-Vector Multiplication by MapReduce 82

4.3.2 MapReduce and Relational Operators 83

4.3.3 Computing Selections by MapReduce 83

4.3.4 Computing Projections by MapReduce 84

4.3.5 Union, Intersection and Difference by MapReduce 85

4.3.6 Computing Natural Join by MapReduce 87

4.3.7 Grouping and Aggression by MapReduce 88

4.3.8 Matrix Multiplication of Large Matrices 89

4.3.9 MapReduce Job Structure 90
Summary 91
Review Questions 92
Laboratory Exercise 92
Chapter 5 Finding Similar Items 105
Learning Objectives 105
5.1 Introduction 105
5.2 Nearest Neighbor Search 106
5.2.1 The NN Search Problem Formulation 107

5.2.2 Jaccard Similarity of Sets 107

5.3 Applications of Nearest Neighbor Search 109
5.4 Similarity of Documents 110
5.4.1 Plagiarism Detection 111

5.4.2 Document Clustering 112

5.4.3 News Aggregators 112

5.5 Collaborative Filtering as a Similar-Sets Problem 112
5.5.1 Online Retail 113

5.6 Recommendation Based on User Ratings 115
5.7 Distance Measures 116
5.7.1 Definition of a Distance Metric 117

5.7.2 Euclidean Distances 118

5.7.3 Jaccard Distance 120

5.7.4 Cosine Distance 120

5.7.5 Edit Distance 122

5.7.6 Hamming Distance 122

CONTENTS e XVii
Summary 123
Exercises 124
Programming Assignments 125
References 125

Chapter 6 Mining Data Streams 127
Learning Objectives 127
6.1 Introduction 127
6.2 Data Stream Management Systems 128

6.2.1 Data Stream Model 128
6.3 Data Stream Mining 130
6.4 Examples of Data Stream Applications 131
6.4.1 Sensor Networks 131
6.4.2 Network Traffic Analysis 131
6.4.3 Financial Applications 132
6.4.4 Transaction Log Analysis 132
6.5 Stream Queries 132
6.6 Issues in Data Stream Query Processing 133
6.6.1 Unbounded Memory Requirements 133
6.6.2 Approximate Query Answering 134
6.6.3 Sliding Windows 134
6.6.4 Batch Processing, Sampling and Synopses 135
6.6.5 Blocking Operators 135
6.7 Sampling in Data Streams 136
6.7.1 Reservoir Sampling 136
6.7.2 Biased Reservoir Sampling 137
6.7.3 Concise Sampling 137
6.8 Filtering Streams 138
6.8.1 An Example 139
6.8.2 The Bloom Filter 140
6.8.3 Analysis of the Bloom Filter 141
6.9 Counting Distinct Elements in a Stream 143
6.9.1 Count Distinct Problem 143
6.9.2 The Flajolet- Martin Algorithm 143
6.9.3 Variations to the FM Algorithm 145
6.9.4 Space Requirements 146

XViii o CONTENTS

6.10 Querying on Windows - Counting Ones in a Window 146
6.10.1 Cost of Exact Counting 147
6.10.2 The Datar—Gionis—Indyk—Motwani Algorithm 147
6.10.3 Query Answering in DGIM Algorithm 149
6.10.4 Updating Windows in DGIM Algorithm 151

6.11 Decaying Windows 152
6.11.1 The Problem of Most-Common Elements 152
6.11.2 Describing a Decaying Window 153

Summary 155
Exercises 156
Programming Assignments 157
References 158
Chapter 7 Link Analysis 159
Learning Objectives 159

7.1 Introduction 159

7.2 History of Search Engines and Spam 160

7.3 PageRank 162
7.3.1 PageRank Definition 163
7.3.2 PageRank Computation 164
7.3.3 Structure of the Web 167
7.3.4 Modified PageRank 169
7.3.5 Using PageRank in a Search Engine 172

7.4 Efficient Computation of PageRank 173
7.4.1 Efficient Representation of Transition Matrices 173
7.4.2 PageRank Implementation Using Map Reduce 174
7.4.3 Use of Combiners to Consolidate the Result Vector 176

7.5 Topic-Sensitive PageRank 176
7.5.1 Motivation for Topic-Sensitive PageRank 177
7.5.2 Implementing Topic-Sensitive PageRank 178
7.5.3 Using Topic-Sensitive PageRank in a Search Engine 178

7.6 Link Spam 179
7.6.1 Spam Farm 180

7.6.2 Link Spam Combating Techniques 182

CONTENTS e XiX
7.7 Hubs and Authorities 183
7.7.1 Hyperlink-Induced Topic Search Concept 184

7.7.2 Hyperlink-Induced Topic Search Algorithm 185
Summary 189
Exercises 191
Programming Assignments 192
References 192
Chapter 8 Frequent Itemset Mining 195
Learning Objectives 195
8.1 Introduction 195
8.2 Market-Basket Model 196
8.2.1 Frequent-Itemser Mining 196

8.2.2 Applications 197

8.2.3 Association Rule Mining 199

8.3 Algorithm for Finding Frequent Itemsets 204
8.3.1 Framework for Frequent-Itemset Mining 204

8.3.2 Itemset Counting using Main Memory 206

8.3.3 Approaches for Main Memory Counting 208

8.3.4 Monotonicity Property of Itemsets 210

8.3.5 The Apriori Algorithm 211

8.4 Handling Larger Datasets in Main Memory 215
8.4.1 Algorithm of Park—Chen—Yu 216

8.4.2 The Multistage Algorithm 221

8.4.3 The Multihash Algorithm 223

8.5 Limited Pass Algorithms 224
8.5.1 The Randomized Sampling Algorithm 224

8.5.2 The Algorithm of Savasere, Omiecinski and Navathe 226

8.5.3 The SON Algorithm and MapReduce 228

8.5.4 Toivonen’s Algorithm 229

8.6 Counting Frequent Items in a Stream 231
8.6.1 Sampling Methods for Streams 232

8.6.2 Frequent Itemsets in Decaying Windows 233
Summary 234

2.6 HADOOP LIMITATIONS e 23

HDES stores large files in the range of gigabytes to terabytes across multiple machines. It
achieves reliability by replicating the data across multiple hosts. Data is replicated on three nodes:
two on the same rack and one on a different rack. Data nodes can communicate with each other
to re-balance data and to move copies around. HDFS is not fully POSIX-compliant to achieve
increased performance for data throughput and support for non-POSIX operations such as

Append.

The HDES file system includes a so-called secondary NameNode, which regularly connects with
the primary NameNode and builds snapshots of the primary NameNode directory information, which
the system then saves to local or remote directories. These check-pointed images can be used to restart
a failed primary NameNode without having to replay the entire journal of file-system actions, then to
edit the log to create an up-to-date directory structure.

An advantage of using HDEFES is data awareness between the JobTracker and TaskTracker. The Job-
Tracker schedules map or reduce jobs to TaskTrackers with an awareness of the data location. For
example, if node A contains data (x, y,) and node B contains data (4, b, ¢), the JobTracker schedules
node B to perform map or reduce tasks on (2,6,¢) and node 4 would be scheduled to perform map
or reduce tasks on (x,22). This reduces the amount of traffic that goes over the network and prevents
unnecessary data transfer.

When Hadoop is used with other file system, this advantage is not always available. This can have a
significant impact on job-completion times, which has been demonstrated when running data-intensive
jobs. HDES was designed for mostly immutable files and may not be suitable for systems requiring
concurrent write-operations.

2.6 Hadoop Limitations

HDES cannot be mounted directly by an existing operating system. Getting data into and out of the
HDES file system can be inconvenient. In Linux and other Unix systems, a file system in Userspace

(FUSE) virtual file system is developed to address this problem.

File access can be achieved through the native Java API, to generate a client in the language of the

users’ choice (C++, Java, Python, PHP, Ruby, etc.), in the command-line interface or browsed through
the HDFS-UI web app over HT'TP.

2.6.1 Security Concerns

Hadoop security model is disabled by default due to sheer complexity. Whoever’s managing the platform
should know how to enable it; else data could be at huge risk. Hadoop does not provide encryption at
the storage and network levels, which is a major reason for the government agencies and others not to
prefer to keep their data in Hadoop framework.

24 . CHAPTER 2/HADOOP

2.6.2 Vulnerable By Nature

Hadoop framework is written almost entirely in Java, one of the most widely used programming
languages by cyber-criminals. For this reason, several experts have suggested dumping it in favor of
safer, more efficient alternatives.

2.6.3 Not Fit for Small Data

While big data is not excusively made for big businesses, not all big data platforms are suitable for handling
small files. Due to its high capacity design, the HDES lacks the ability to efficiently support the random

reading of small files. As a resul, it is not recommended for organizations with small quantities of data.

2.6.4 Potential Stability Issues

Hadoop is an open-source platform necessarily created by the contributions of many developers who
continue to work on the project. While improvements are constantly being made, like all open-source
software, Hadoop has stability issues. To avoid these issues, organizations are strongly recommended to
make sure they are running the latest stable version or run it under a third-party vendor equipped to

handle such problems.

2.6.5 General Limitations

Google mentions in its article that Hadoop may not be the only answer for big data. Google has its own
Cloud Dataflow as a possible solution. The main point the article stresses is that companies could be
missing out on many other benefits by using Hadoop alone.

Summary

* MapReduce brings compute to the data in » Hadoop jobs go through a map stage and a
contrast to traditional distributed system, reduce stage where

which brings data to the compute resources.)
o the mapper transforms the input data

* Hadoop stores data in a replicated and into key—value pairs where multiple

distributed way on HDFS. HDES stores values for the same key may occur.

files in chunks which are physically stored on o the reducer transforms all of the key—
multiple compute nodes. value pairs sharing a common key into a
* MapReduce is ideal for operating on single key—value.

very la{rge, unstructured datas.ets Wben o There are specialized services that form the
aggregation across large datasets is required Hadoop ecosystem to complement the Hadoop
modules. These are HBase, Hive, Pig, Sqoop,

Mahout, Oozie, Spark, Ambari to name a few.

and this is accomplished by using the power
of Reducers.

LABORATORY EXERCISES « 25

Review Questions

1. What is Hadoop? 10. What is a NameNode?
2. Why do we need Hadoop? 11. What is a DataNode?

3. What are core components of Hadoop 12. Why is HDES more suited for applications
framework? having large datasets and not when there are
small files?

i >
5. What is the basic difference between tradi- 13. What is a JobTracker:
tional RDBMS and Hadoop? 14. What is a Task Tracker?

6. What is structured, semi-structured and 15. What is a “block” in HDES?

unsltrflctured data? Give an example and 16. What are the benefits of block transfer?
explain.

7. What is HDFES and what are its features?

4. Give a brief overview of Hadoop.

17. What is a secondary NameNode? Does it
substitute a NameNode?

8. What is Fault Tolerance? 18. What is MapReduce? Explain how do “map”
9. If replication causes data redundancy, then and “reduce” work?
why is it pursued in HDFS? 19. What sorts of actions does the JobTracker

process perform?

Laboratory Exercise

A. Instructions to learners on how to run wordcount program on Cloudera

To start working with Hadoop for beginners, the best choice is to download ClouderaVM from their
official website (and it is free).

Download Link:
http://www.cloudera.com/content/cdoudera/en/downloads/quickstart_vms/cdh-5-4-x.html

Pre-requisite: Install VM Ware Player or Oracle Virtual Box.
For the above version of Cloudera we need virtual box.

INSTALLING AND OPENNING Cloudera in VIRTUAL BOX
STEP1: EXTRACT the downloaded zip file in the same folder or in home directory.
STEP2: Open virtualbox. Then

* Click New button which is at toolbar menu.

* A new window will open. Type name in the Name field, for example, “Cloudera”. Next in Type
field select the type as “Linux’. In the version field select “Other Linux(64 bit)”.

26 - CHAPTER 2/HADOOP

* Click on Next Button. A new window will open. Select the RAM size. Click on Next Button.

* Here you have three options, out of which select “use an existing virtual Hard drive file”. Browse

your Cloudera folder for file with .vmdk extension. Select that file and press ENTER.

Now as we have successfully created vm we can start Cloudera. So start it by clicking on start button.
It will take some time to open. Wait for 2 to 3 minutes. Here the operating system is CentOS.

Once the system gets loaded we will start with the simple program called “wordcount” using
MapReduce function which is a simple “hello world” kind of program for Hadoop.

STEPS FOR RUNNING WORDCOUNT PROGRAM:

1. OPEN the Terminal. Install a package “wget” by typing the following command:
$ sudo yum -y install wget

2. Make directory:
$ mkdir temp

3. Goto temp:
$cd temp

4. Create a file with some content in it:

$ echo “This is SPIT and you can call me Sushil. I am good at statistical modeling and data
analysis” > wordcount.txt

5. Make input directory in the HDES system:

$ hdfsdfs -mkdir /user/cloudera/input
6. Copy file from local directory to HDES file system:

$ hdfsdfs -put /home/cloudera/temp/wordcount.txt /user/cloudera/input/
7. To check if your file is successfully copied or not, use:

$ hdfsdfs -ls /user/cloudera/input/
8. To check hadoop-mapreduce-examples, use:

$ hadoop jar /usr/lib/hadoop-mapreduce/hadoop-mapreduce-examples.jar
9. Run the wordcount program by typing the following command:

$ hadoop jar /usr/lib/hadoop-mapreduce/hadoop-mapreduce-examples.jar wordcount /user/
cloudera/input/wordcount.txt /user/cloudera/output

Note: The output will be generated in the output directory in HDES file system and stored in
part file “part-r-00000”.

LABORATORY EXERCISES o 27

10. Check output directory:
$hdfsdfs -Is /user/cloudera/output
11. Open the part file to check the output:
$ hdfsdfs -cat /user/cloudera/output/part-r-00000

Note: The above command will display the file content on the terminal. If you want to open
it in the text editor then we need to copy it to our local file system. To do so, use the following
command:

$ hdfsdfs -copyToLocal /user/cloudera/output/part-r-00000 /home/cloudera

B. Guidelines to Install Hadoop 2.5.2 on top of Ubuntu 14.04 and write WordCount Program
in Java using MapReduce structure and test it over HDFS

Pre-requisite: Apache, JAVA, ssh packages must be installed. If not then follow the following steps.

B1. Steps for Installing Above Packages
1. Before installing above packages, Create a new user to run the Hadoop (hduser or huser) and give
it sudo rights:

e Create group name hadoop:

$ sudoaddgrouphadoop

e To create user and add it in group named Hadoop use

$ sudoadduser --ingrouphadoophduser

e To give sudo rights to hduser use

$ sudoadduserhdusersudo

e To switch user to hduser use

$ suhduser
2. Install the following software:
Update the source list
$ sudo apt-get update
2.1 Apache
$ sudo apt-get install apache2
The Open]DK project is the default version of Java.

It is provided from a supported Ubuntu repository.

28 . CHAPTER 2/HADOOP

2.2 Java
$ sudo apt-get install default-jdk
$ java -version

2.3 Installing SSH: ssh has two main components, namely,
¢ ssh: The command we use to connect to remote machines — the client.

 sshd: The daemon that is running on the server and allows clients to connect to the server.
The ssh is pre-enabled on Linux, but in order to start sshd daemon, we need to install ssh first. Use the
following command to do so:

$ sudo apt-get install ssh

This will install ssh on our machine. Verify if ssh is installed properly with which command:

$ whichssh
o/p:ust/bin/ssh

$ whichsshd
o/p:/usr/sbin/sshd

Create and Setup SSH Certificates: Hadoop requires SSH access to manage its nodes, that is, remote
machines plus our local machine. For our single-node setup of Hadoop, we therefore need to configure
SSH access to local host. So, we need to have SSH up and running on our machine and configured to
allow SSH public key authentication. Hadoop uses SSH (to access its nodes) which would normally
require the user to enter a password. However, this requirement can be eliminated by creating and set-
ting up SSH certificates using the following commands. If asked for a filename just leave it blank and
press the enter key to continue.

«K»

$ ssh-keygen -t rsa -P

Note: After typing the above command just press Enter two times.

$ cat SHOME/ .ssh/id_rsa.pub >> $SHOME/ .ssh/authorized_keys

The second command adds the newly created key to the list of authorized keys so that Hadoop can use
ssh without prompting for a password.

We can check if ssh works using the following command:
$ ssh localhost
o/p:
The authenticity of host ‘localhost (127.0.0.1)" cannot be established.
ECDSA key fingerprint is e1:8b:a0:a5:75:ef:f4:b4:5¢:a9:ed:be:64:be:5c:2f.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added ‘localhost’ (ECDSA) to the list of known hosts.
Welcome to Ubuntu 14.04.1 LT'S (GNU/Linux 3.13.0-40-generic x86_64)

LABORATORY EXERCISES . 29

B2. Installing Hadoop

1.

Download and extract the hadoop-2.5.2.tar.gz to the Downloads directory from the link given below:

https://archive.apache.org/dist/hadoop/core/hadoop-2.5.2/

To switch user to hduser use

$ sudosuhduser

To move hadoop to/usr/local/Hadoop use

$ sudo mv /home/admin/Downloads/* /usr/local/hadoop

To change the access rights use

sudochown -R hduser:hadoop /usr/local/hadoop

B3. Setup Configuration Files

The following files will have to be modified to complete the Hadoop setup:

~/.bashrc

/usr/local/hadoop/etc/hadoop/hadoop-env.sh
/usr/local/hadoop/etc/hadoop/core-site.xml
/ust/local/hadoop/etc/hadoop/mapred-site.xml.template
/usr/local/hadoop/etc/hadoop/hdfs-site.xml

1.

~/.bashrc: Before editing the .bashrc file in our home directory, we need to find the path where
Java has been installed to set the JAVA_HOME environment variable using the following
command:

$ update-alternatives --config java

Now we can append the following to the end of ~/.bashrc:

$ vi ~/.bashrc

#HADOOP VARIABLES START

export JAVA_ HOME=/ust/lib/jvm/java-7-openjdk-amd64

export HADOOP_INSTALL=/ust/local/hadoop

export PATH=$§PATH:$HADOOP_INSTALL/bin

export PATH=$PATH:$HADOOP_INSTALL/sbin

export HADOOP_MAPRED_HOME=$HADOOP_INSTALL

export HADOOP_COMMON_HOME=$HADOOP_INSTALL

export HADOOP_HDFS_HOME=$HADOOP_INSTALL

export YARN_HOME=$HADOOP_INSTALL

export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_INSTALL/lib/native
export HADOOP_OPTS="-Djava.library.path=HADOOP_INSTALL/lib”
#HADOOP VARIABLES END

30

CHAPTER 2/HADOOP

$ source ~/.bashrc
Note that the JAVA_HOME should be set as the path just before the “.../bin/*:

$ javac -version
$ whichjavac

$ readlink -f /usr/bin/javac

/ust/local/hadoop/etc/hadoop/hadoop-env.sh: We need to set JAVA_ HOME by modifying
hadoop-env.sh file.

$ vi /usr/local/hadoop/etc/hadoop/hadoop-env.sh
Add the following configuration:
export JAVA_HOME=/ust/lib/jvm/java-7-openjdk-amd64

3. /usr/local/hadoop/etc/hadoop/core-site.xml: This file contains configuration properties that

Hadoop uses when starting up.This file can be used to override the default settings that Hadoop
starts with.

$ sudomkdir -p /app/hadoop/tmp
$ sudochownhduser:hadoop /app/hadoop/tmp
Open the file and enter the following in between the <configuration></configuration> tag:

$ vi /usr/local/hadoop/etc/hadoop/core-site.xml

<configuration>

<property>

<name>hadoop.tmp.dir</name>
<value>/app/hadoop/tmp</value>

<description>A base for other temporary directories.</description>
</property>

<property>

<name>fs.default.name</name>
<value>hdfs://localhost:54310</value>

<description>The name of the default file system. A URI whose

scheme and authority determine the FileSystem implementation. The
uri’s scheme determines the config property (fs.SCHEME.impl) naming
the FileSystem implementation class. The uri’s authority is used to
determine the host, port, etc. for a filesystem.</description>
</property>

</configuration>

LABORATORY EXERCISES « 31

4. [usr/local/hadoop/etc/hadoop/mapred-site.xml: By default, the /usr/local/hadoop/etc/hadoop/
folder contains /usr/local/hadoop/etc/hadoop/mapred-site.xml.template file which has to be
renamed/copied with the name mapred-site.xml.

$ cp /ust/local/hadoop/etc/hadoop/mapred-site.xml.template /usr/local/hadoop/etc/hadoop/

mapred-site.xml
The mapred-site.xml file is used to specify which framework is being used for MapReduce.
We need to enter the following content in between the <configuration></configuration> tag:

<configuration>

<property>

<name>mapred.job.tracker</name>
<value>localhost:54311</value>

<description>The host and port that the MapReduce job tracker runs
at. If “local”, then jobs are run in-process as a single map

and reduce task.

</description>

</property>

</configuration>

5. /ust/local/hadoop/etc/hadoop/hdfs-site.xml: This file needs to be configured for each host in the
cluster that is being used. It is used to specify the directories which will be used as the NameNode
and the DataNode on that host. Before editing this file, we need to create two directories which
will contain the NameNode and the DataNode for this Hadoop installation. This can be done
using the following commands:

$ sudomkdir -p /ust/local/hadoop_store/hdfs/namenode
$ sudomkdir -p /ust/local/hadoop_store/hdfs/datanode
$ sudochown -R hduser:hadoop /ust/local/hadoop_store

Open the file and enter the following content in between the <configuration></configuration>
tag:

$ vi /usr/local/hadoop/etc/hadoop/hdfs-site.xml

<configuration>

<property>
<name>dfs.replication</name>
<value>1</value>
<description>Default block replication.

The actual number of replications can be specified when the file is created.
The default is used if replication is not specified in create time.

32

CHAPTER 2/HADOOP

B4.

</description>

</property>

<property>

<name>dfs.namenode.name.dir</name>
<value>file:/usr/local/hadoop_store/hdfs/namenode</value>
</property>

<property>

<name>dfs.datanode.data.dir</name>
<value>file:/usr/local/hadoop_store/hdfs/datanode</value>
</property>

</configuration>

Format the New Hadoop File System: Now, the Hadoop file system needs to be formatted so
that we can start to use it. The format command should be issued with write permission since it
creates current directory:

under /usr/local/hadoop_store/hdfs/namenode folder:
$ hadoopnamenode -format

Note that hadoopnamenode -format command should be executed once before we start using
Hadoop. If this command is executed again after Hadoop has been used, it will destroy all the
data on the Hadoop file system.

Starting Hadoop: Now it is time to start the newly installed single node cluster. We can use
start-all.sh or (start-dfs.sh and start-yarn.sh)

$ cd /usr/local/hadoop/sbin
$ start-all.sh

We can check if it is really up and running using the following command:
$ jps

o/ p:

9026 NodeManager

7348 NameNode

9766 Jps

8887 ResourceManager
7507 DataNode

The output means that we now have a functional instance of Hadoop running on our VPS
(Virtual private server).

$ netstat -plten | grep java

LABORATORY EXERCISES e 33

B5.

Stopping Hadoop

$ cd /usr/local/hadoop/sbin

$ stop-all.sh

Running Wordcount on Hadoop 2.5.2: Wordcountis the hello_world program for MapReduce.

Code for wordcount program is:

packageorg.myorg;

importjava.io.IOException;

importjava.util.*;

importorg.apache.hadoop.fs.Path;
importorg.apache.hadoop.conf.*;

import org.apache.hadoop.io.”;
importorg.apache.hadoop.util.*;
importorg.apache.hadoop.mapreduce.Mapper;
importorg.apache.hadoop.mapreduce.Reducer;
importorg.apache.hadoop.conf.Configuration;
importorg.apache.hadoop.conf.Configured;
importorg.apache.hadoop.mapreduce.Job;
importorg.apache.hadoop.mapreduce.lib.input.FileInputFormat;
importorg.apache.hadoop.mapreduce.lib.output.FileOutputFormart;
importorg.apache.hadoop.mapred.JobConf;

public class myWordCount {

public static class Map extends Mapper

<LongWritable, Text, Text, IntWritable> {

private final static IntWritable one = new IntWritable(1);
private Text word = new Text();

public void map(LongWritable key, Text value, Context context) throws IOException, Inter-
ruptedException {
String line = value.toString();
String Tokenizer tokenizer = new String Tokenizer(line);
while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.next Token());
context.write(word, one);

J
J
J

public static class Reduce extends Reducer

<Text, IntWritable, Text, IntWritable> {

public void reduce(Text key, Iterator<IntWritable> values, Context context) throws IOExcep-
tion, InterruptedException {

34 . CHAPTER 2/HADOOP

int sum = 0;
while (values.hasNext()) {
sum += values.next().get();
}
context.write(key, new IntWritable(sum));
}
}

public static void main(String[] args) throws Exception {

Configuration conf = new Configuration();
conf.set(“mapreduce.job.queuename”, “apg p7”);
System.out.println(“This is a new version”);

Job job = new Job(conf);
job.setJarByClass(myWordCount.class);
job.setJobName(“myWordCount”);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
job.setMapperClass(myWordCount.Map.class);
job.setCombinerClass(myWord Count.Reduce.class);
job.setReducerClass(myWordCount.Reduce.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.waitForCompletion(true);

J
J

Note: Copy the above code and save it with .java extension. To run the program under MapReduce,
the following steps needs to be done:

1. Putsource code under this locatdon
/project/src/org/myorg/myWordCount.java

2. Compile java code

$ mkdir /project/class;
$ cd /project;

$ javac -classpath “yarn classpath® -d ./class ./src/org/myorg/*.java
3. Create manifest.txt file

$ cd project/class;

$ sudo vim manifest.txt;

The content of manifest.txt is

Main-Class: org.myorg.myWordCount
Leave an empty line at the end of manifest.txt

LABORATORY EXERCISES « 35

4. To Generate jar file
$ jar -cvmf manifest.txt myWordCount.jar org
5. Putinput data on HDFS
$ mkdir input
$ echo “hadoop is fast and hadoop is amazing, hadoop is new Technology for Big Data Process-
ing” > input/filel
$ hadoop fs -put input /user/hadoop
6. Run the program

hadoop jar myWordCount.jar /user/hadoop/input /user/hadoop/output

What is NoSQL?

LEARNING OBJECTIVES
After reading this chapter, you will be able to:

* Understand NoSQL business drivers. e Learn thevariationsin NoSQL architectural
* Learn the desirable features of NoSQL that pattern.

drive business. * Learn how NoSQL is used to manage big
e Learn the need for NoSQL through case data.

studies. * Learn how NoSQL system handles big data
e Learn NoSQL data architectural pattern. problems.

3.1 Whatis NoSQL?

NoSQL is database management system that provides mechanism for storage and retrieval of massive
amount of unstructured data in a distributed environment on virtual servers with the focus to provide

high scalability, performance, availability and agility.

In other words, NoSQL was developed in response to a large volume of data stored about users,
objects and products that need to be frequently accessed and processed. Relational databases are not
designed to scale and change easily to cope up with the needs of the modern industry. Also they do not
take advantage of the cheap storage and processing power available today by using commodity hardware.

NoSQL database is also referred as Not only SQL. Most NoSQL systems are entirely non-relational;
they do not have fixed schemas or JOIN operations. Instead they use objects, key-value pairs, or tuples.

Some of the NoSQL implementations are SimpleDB, Google BigT'able, Apache Hadoop, MapReduce
and MemcacheDB. There are approximately 150 NoSQL databases available in the market. Companies
that largely use NoSQL are NetFlix, LinkedIn and Twitter for analyzing their social network data.

In short:

1. NoSQL is next generation database which is completely different from the traditional database.

2. NoSQL stands for Not only SQL. SQL as well as other query languages can be used with NoSQL

databases.

38 - CHAPTER 3/WHAT IS NoSQL?

NoSQL is non-relational database, and it is schema-free.

NoSQL s free of JOINE.

NoSQL uses distributed architecture and works on multiple processors to give high performance.
NoSQL databases are horizontally scalable.

Many open-source NoSQL databases are available.

Data file can be easily replicated.

NoSQL uses simple API.

A S O G

10. NoSQL can manage huge amount of data.
11. NoSQL can be implemented on commodity hardware which has separate RAM and disk (shared-

nothing concept).

3.1.1 Why NoSQL?

The reality is that a traditional database model does not offer the best solution for all scenarios in
applications. A relational database product can cater to a more predictable, structured data. NoSQL is
required because today’s industry needs a very agile system that can process unstructured and unpre-
dictable data dynamically. NoSQL is known for its high performance with high availability, rich query
language, and easy scalability which fits the need. NoSQL may not provide atomicity, consistency,
isolation, durability (ACID) properties but guarantees eventual consistency, basically available, soft
state (BASE), by having a distributed and fault-tolerant architecture.

3.1.2 CAP Theorem

Consistency, Availability, Partition tolerance (CAP) theorem, also called as Brewer’s theorem,
states that it is not possible for a distributed system to provide all three of the following guarantees
simultaneously:

1. Consistency guarantees all storage and their replicated nodes have the same data at the same time.

2. Availability means every request is guaranteed to receive a success or failure response.

3. Partition tolerance guarantees that the system continues to operate in spite of arbitrary partition-
ing due to network failures.

3.2 NoSQL Business Drivers

Enterprises today need highly reliable, scalable and available data storage across a configurable set of
systems that act as storage nodes. The needs of organizations are changing rapidly. Many organizations
operating with single CPU and Relational database management systems (RDBMS) were not able to

3.2 NoSQL BUSINESS DRIVERS . 39

cope up with the speed in which information needs to be extracted. Businesses have to capture and
analyze a large amount of variable data, and make immediate changes in their business based on their

findings.

Figure 3.1 shows RDBMS with the business drivers velocity, volume, variability and agility neces-
sitates the emergence of NoSQL solutions. All of these drivers apply pressure to single CPU relational
model and eventually make the system less stable.

Velocity

Volume Variability

Agility

Figure 3.1 NoSQL business drivers.

3.2.1 Volume

There are two ways to look into data processing to improve performance. If the key factor is only speed,
a faster processor could be used. If the processing involves complex (heavy) computation, Graphic
Processing Unit (GPU) could be used along with the CPU. But the volume of data is limited to
on-board GPU memory. The main reason for organizations to look at an alternative to their current
RDBMSs is the need to query big data. The need to horizontal scaling made organizations to move
from serial to distributed parallel processing where big data is fragmented and processed using clusters of
commodity machines. This is made possible by the development of technologies like Apache Hadoop,
HDES, MapR, HBase, etc.

3.2.2 Velocity

Velocity becomes the key factor when frequency in which online queries to the database made by
social networking and e-commerce web sites have to be read and written in real time. Many single
CPU, RDBMS systems are unable to cope up with the demands of real-time inserts. RDBMS systems
frequently index on many columns that decrease the system performance. For example, when online
shopping sites introduce great discount schemes, the random bursts in web traffic will slow down the

40 . CHAPTER 3/WHAT IS NoSQL?

response for every user and tuning these systems as demand increases can be costly when both high read
and write is required.

3.2.3 Variability

Organizations that need to capture and report on certain uncommon data, struggle when attempting to
use RDBMS fixed schema. For example, if a business process wants to store a few special attributes for
a few set of customers,then it needs to alter its schema definition. If a change is made to the schema, all
customer rows within the database will also have this column. If there is no value related to this for most
of the customers, then the row column representation will have sparse matrix. In addition to this, new
columns to an RDBMS require to execute ALTER TABLE command. This cannot be done on the fly
since the present executing transaction has to complete and database has to be closed, and then schema
can be altered. This process affects system availability, which means losing business.

3.2.4 Agility

The process of storing and retrieving data for complex queries in RDBMS is quite cumbersome. If it is
a nested query, data will have nested and repeated subgroups of data structures that are included in an
object-relational mapping layer. This layer is responsible to generate the exact combination of SELECT,
INSERT, DELETE and UPDATE SQL statements to move the object data from and to the backend
RDBMS layer. This process is not simple and requires experienced developers with the knowledge of
object-relational frameworks such as Java Hibernate. Even then, these change requests can cause slow-
downs in implementation and testing.

Desirable features of NoSQL that drive business are listed below:

1. 24X 7 Data availability: In the highly competitive world today, downtime is equated to real
dollars lost and is deadly to a company’s reputation. Hardware failures are bound to occur. Care
has to be taken that there is no single point of failure and system needs to show fault tolerance.
For this, both function and data are to be replicated so that if database servers or “nodes” fail,
the other nodes in the system are able to continue with operations without data loss. NoSQL
database environments are able to provide this facility. System updates can be made dynamically
without having to take the database offline.

2. Location transparency: The ability to read and write to a storage node regardless of where that
/O operation physically occurs is termed as “Location Transparency or Location Independence”.
Customers in many different geographies need to keep data local at those sites for fast access. Any
write functionality that updates a node in one location, is propagated out from that location so
that it is available to users and systems at other locations.

3. Schema-less data model: Most of the business data is unstructured and unpredictable which
a RDBMS cannot cater to. NoSQL database system is a schema-free flexible data model that
can easily accept all types of structured, semi-structured and unstructured data. Also relational
model has scalability and performance problems when it has to manage large data volumes.

3.2 NoSQL BUSINESS DRIVERS . 41

NoSQL data model can handle this easily to deliver very fast performance for both read and
write operations.

4. Modern day transaction analysis: Most of the transaction details relate to customer profile,
reviews on products, branding, reputation, building business strategy, trading decisions, etc. that
do not require ACID transactions. The data consistency denoted by “C” in ACID property in
RDBMSs is enforced via foreign keys/referential integrity constraints. This type of consistency is
not required to be used in progressive data management systems such as NoSQL databases since
there is no JOIN operation. Here, the “Consistency” is stated in the CAP theorem that signifies
the immediate or eventual consistency of data across all nodes that participate in a distributed
database.

5. Architecture that suits big data: NoSQL solutions provide modern architectures for
applications that require high degrees of scale, data distribution and continuous availability.
For this multiple data center support with which a NoSQL environment complies is one of the
requirements. The solution should not only look into today’s big data needs but also suit greater
time horizons. Hence big data brings four major considerations in enterprise architecture which
are as follows:

 Scale of data sources: Many companies work in the multi-terabyte and even petabyte data.

o Speed is essential: Overnight extract-transform-load (ETL) batches are insufficient and real-
time streaming is required.

» Change in storage models: Solutions like Hadoop Distributed File System (HDES) and
unstructured data stores like Apache Cassandra, MongoDb, Neo4j provide new options.

e Muldple compute methods for Big Data Analytics must be supported.

Figure 3.2 shows the architecture that suits big data.

Site

\}
‘\Jda \

Online

query
engine

Storage

Y

Key-value
storage

Preprocessing Hadoop

Figure 3.2 The architecture that suits big data.

42 . CHAPTER 3/WHAT IS NoSQL?

6. Analytics and business intelligence: A key business strategic driver that suggests the implemen-
tation of a NoSQL database environment is the need to mine the data that is being collected
in order to derive insights to gain competitive advantage. Traditional relational database system
poses great difficulty in extracting meaningful business intelligence from very high volumes of
data. NoSQL database systems not only provide storage and management of big data but also
deliver integrated data analytics that provides instant understanding of complex datasets and
facilitate various options for easy decision-making.

- 3.3 ‘ NoSQL Case Studies

Four case studies are discussed in the following subsections and each of them follow different architec-
tural pattern, namely, key-value store, Column Family/BigTable, Document store and Graph store.

3.3.1 Amazon DynamoDB

Amazon.com has one of the largest e-commerce operations in the world. Customers from all around the
world shop all hours of the day. So the site has to be up 24 x 7. Initially Amazon used RDBMS system
for shopping cart and checkout system. Amazon DynamoDB, a NoSQL store brought a turning point.

DynamoDB addresses performance, scalability and reliability, the core problems of RDBMS when
it comes to growing data. Developers can store unlimited amount of data by creating a database table
and DynamoDB automatically saves it at multiple servers specified by the customer and also replicates
them across multiple “Available” Zones. It can handle the data and traffic while maintaining consis-
tent, fast performance. The cart data and session data are stored in the key-value store and the final

(completed) order is saved in the RDBMS as shown in Fig. 3.3.

> E-commerce e
Cart data Session data
X Final order .
Key-value store Key-value store
e

RDBMS

Figure 3.3 E-commerce shopping cart uses key-value store.

60 -

CHAPTER 3/WHAT IS NoSQL?

7. Start MongoDB: Issue the following command to start mongod:

$ sudo service mongod start

8. Stop MongoDB: As needed, we can stop the mongod process by issuing the following command:

$ sudo service mongod stop

9. Restart MongoDB: Issue the following command to restart mongod:

$ sudo service mongod restart

II. Working with MongoDB

(a) Once the installation of MongoDB is completed type the following command to run it:

$ mongo

O/P:

MongoDB shell version: 2.6.11
connecting to: test

>

(b) To check the different commands available in MongoDB type the command as shown below:

(c)

>db.help()
O/P:

DB methods:

db.adminCommand(nameOrDocument) - switches to ‘admin’ db, and runs command [just

calls db.runCommand(...)]

db.auth(username, password)

db.cloneDatabase(fromhost)

db.commandHelp(name)- returns the help for the command
db.copyDatabase(fromdb, todb, fromhost)
db.createCollection(name, { size : ..., capped : ..., max : ... })
db.createUser(userDocument)

db.currentOp()-displays currently executing operations in the db
db.dropDatabase()

db.eval(func, args)- runs code server-side
db.fsyncLock()-flushes data to disk and lock server for backups
db.fsyncUnlock()-unlocks server following a db.fsyncLock()
db.getCollection(cname) same as db[‘cname’] or db.cname
db.getCollectionInfos()

db.getCollectionNames()

db.getLastError()- just returns the err msg string

LABORATORY EXERCISES e 61

db.getLastErrorODbj()- returns full status object

db.getMongo()-gets the server connection object
db.getMongo().setSlaveOk() -allows queries on a replication slave server
db.getName()

db.getPrevError()

db.getProfilingLevel()- deprecated

db.getProfilingStatus()- returns if profiling is on and slow threshold
db.getReplicationInfo()

db.getSiblingDB(name) -gets the db at the same server as this one

db.getWriteConcern()- returns the write concern used for any operations on this db, inher-
ited from server object if set

db.hostInfo()-gets details about the server’s host

db.isMaster() —checks replica primary status

db.killOp(opid) -kills the current operation in the db

db.listCommands()-lists all the db commands

db.loadServerScripts()- loads all the scripts in db.system.js

db.logout()

db.printCollectionStats()

db.printReplicationInfo()

db.printShardingStatus()

db.printSlaveReplicationInfo()

db.dropUser(username)

db.repairDatabase()

db.resetError()

db.runCommand(cmdObj)- runs a database command. If cmdODbj is a string, turns it into {
cmdObj: 1}

db.serverStatus()

db.setProfilinglevel(level <slowms>) 0=off 1=slow 2=all

db.setWriteConcern(<write concern doc>) - sets the write concern for writes to the db
db.unsetWriteConcern(<write concern doc>) — unsets the write concern for writes to the db
db.setVerboseShell(flag) ~displays extra information in shell output
db.shutdownServer()

db.stats()

db.version()-current version of the server

>

(d) To check the current statistic of database type the command as follows:

>db.stats()
O/P:

62 . CHAPTER 3/WHAT IS NoSQL?

“db” : “tCSt”,
“collections” : 0,
“objects” : 0,
“avgObjSize” : 0,
“dataSize” : 0,
“storageSize” : 0,
“numExtents” : 0,
“indexes” : 0,
“indexSize” : 0,
“fileSize” : 0,
“dataFileVersion” : {
b
“ok”: 1

}

>

Note: In the output we can see that everything is “0”. This is because we haven' yet created any collection.

Some considerations while designing schema in MongoDB:

1. Design your schema as per the user’s requirements.

[\®)

. Combine the objects into one document if you are going to use them together. Otherwise separate
them.

. Duplicate the data (but in limit) because disk space is cheap as compare to compute time.
. Optimize your schema for the most frequent use cases.

. Do join while write and not on read.

AN Nt W W

. Do complex aggregation in the schema.

For example: Let us say that a client needs a database design for his blog and see the differences between
RDBMS and MongoDB schema. Website has the following requirements:
. Every post can have one or more tag.

. Every post has the unique title, description and url.

. Every post has the name of its publisher and total number of likes.

W

. On each post there can be zero or more comments.

In RDBMS schema design for above requirements will have minimum three tables.
Comment(comment_id,post_id,by_user,date_time,likes,messages)
post(id,title,description,like,url,post_by)

LABORATORY EXERCISES .« 63

tag_list(id,post_id,tag)

While in MongoDB schema design will have one collection (i.e., Post) and has the following structure:

{

_id: POST _ID
title: TITLE_OF_POST,
description: POST_DESCRIPTION,
by: POST_BY,
url: URL_OF_POST,
tags: [TAG1, TAG2, TAG3],
likes: TOTAL_LIKES,
comments: [

{
user: COMMENT _ BY’,
message: TEXT,
dateCreated: DATE_TIME,
like: LIKES

bJ

{
user: COMMENT BY’,

message: TEXT,
dateCreated: DATE_TIME,

like: LIKES
}
]
}
The table given below shows the basic terminology in MongoDB in relation with RDBMS:

RDBMS MongoDB
Database Database
Table Collection
Tuple/Row Document
Column Field
Table Join Embedded Documents
Primary Key Primary Key (Default key _id provided

by mongodb itself)

Use command is used to create a new database or open an existing one.

64

. CHAPTER 3/WHAT IS NoSQL?

1. The use command: In MongoDB use command is used to create the new database. The com-

mand creates new database,if it doesnot exist; otherwise it will return the existing database.

Syntax:
use DATABASE_ NAME

Example: If you want to create a database with name <mydatabase1>, then use DATABASE state-
ment as follows:

> use mydatabasel

switched to db mydatabasel

To check your currently selected database type “db”.
>db
mydatabasel

To check your database list type the following command:
> show dbs

admin (empty)

local 0.078GB

test (empty)

Our created database (mydatabasel) is not present in list. To display database we need to insert
atleast one document into it.

>db.students.insert({“name”:”Sushil”,”place”:” Mumbai’})

WriteResult({ “nInserted” : 1 })

> show dbs

admin (empty)

local 0.078GB

mydatabasel 0.078GB

test (empty)

. The dropDatabase() Method: In MongoDB, db.dropDatabase() command is used to drop an

existing database.

Syntax:
db.dropDatabase()

Basically it will delete the selected database, but if you have not selected any database, then it will
delete the default test database.

For example, to do so, first check the list of available databases by typing the command:

> show dbs

admin (empty)

local 0.078GB
mydatabasel 0.078GB

test (empty)

LABORATORY EXERCISES « 65

Suppose you want to delete newly created database (i.e. mydatabasel) then

> use mydatabasel

switched to db mydatabasel
>db.dropDatabase()

{ “dropped” : “mydatabasel”, “ok”™: 1}

Now just check the list of databases. You will find that the database name mydatabasel is not
present in the list. This is because it got deleted.

> show dbs
admin (empty)
local 0.078GB
test (empty)

3. The createCollection() Method: In MongoDB, db.createCollection(name, options) is used to
create collection.

Syntax:
db.createCollection(name,options)

Parameter Type Description
Name String Name of the collection to be created
Options Document (Optional) Specify options about memory size and indexing

Following is the list of options you can use:

Field Type Description

capped Boolean (Optional) If true, enables a capped collection. Capped collection
is a fixed size collection that automatically overwrites its oldest
entries when it reaches its maximum size. If you specify true, you
need to specify size parameter also.

autolndexID Boolean (Optonal) If true, automatically creates index on _id field.s
Default value is false.

Size number (Optional) Specifies a maximum size in bytes for a capped
collection. If capped is true, then you need to specify this field
also.

Max number (Optional) Specifies the maximum number of documents allowed

in the capped collection.

66

. CHAPTER 3/WHAT IS NoSQL?

For example, basic syntax of createCollection() method without options is as follows:

> use testl
switched to db testl
>db.createCollection(“mycollection1”)

{“ok”: 1}
-To check the created collection:

> show collections
mycollection1

system.indexes

Note: In MongoDB you donot need to create collection.It creates collection automatically when
you insert some document. For example,

>db.students.insert({ ‘name” : “sushil”})
WriteResult({ “nInserted” : 1 })

> show collections

mycollection1

students
system.indexes

. The drop() Method: MongoDB’s db.collection.drop() is used to drop a collection from the

database.
Syntax:
db.COLLECTION_NAME.drop()

For example,

-First check the available collections:
> show collections

mycollection]

students

system.indexes

-Delete the collection named mycollectionl:
>db.mycollection1.drop()

true

-Again check the list of collection:

> show collections

students

system.indexes

>

LABORATORY EXERCISES e 67

5. The supported datatype in MongoDB are as follows:

e String: This is the most commonly used datatype to store the data. String in mongodb must be

UTF-8 valid.

* Integer: This type is used to store a numerical value. Integer can be 32 bit or 64 bit depending
upon your server.

* Boolean: This type is used to store a Boolean (true/ false) value.
* Double: It is used to store floating point values.

* Min/Max keys: This type is used to compare a value against the lowest and highest BSON

elements.
* Arrays: This type is used to store arrays or list or multiple values into one key.

e Timestamp: ctimestamp. This can be handy for recording when a document has been modified

or added.
* Object: This datatype is used for embedded documents.
® Null: This type is used to store a Null value.

* Symbol: Its use is identically to a string. However, it is generally reserved for languages that use
a specific symbol type.

* Date: This datatype is used to store the current date or time in UNIX time format. You can
specify your own date time by creating object of Date and passing day, month, year into it.

* Object ID: This datatype is used to store the documents ID.

* Binary data: This datatype is used to store binary data.

* Code: This datatype is used to store javascript code into document.

* Regular expression: This datatype is used to store regular expression.

e RDBMS where Clause Equivalents in MongoDB: To query the document on the basis of
some condition, you can use following operations:

Operation Syntax Example RDBMS
Equivalent
Equality {<key>:<value>} db.mycol.find({“by”:"tutorials ~ where by =
point”}).pretty() ‘tutorials point’
Less Than {<key>:{$lt:<value>}} db.mycol. where likes <50

find({“likes”:{$1t:50}}).pretty()

(Continued)

68 .

CHAPTER 3/WHAT IS NoSQL?

(Continued)

Operation Syntax Example RDBMS

Equivalent

Less Than {<key>:{$lte:<value>}} db.mycol. where likes <= 50
Equals find({“likes”:{$lte:50}}).pretey()

Greater Than {<key>:{$gt:<value>}} db.mycol. where likes >50

find({“likes”:{$gt:501}).pretty()

Greater Than {<key>:{$gte:<value>}} db.mycol. where likes >= 50
Equals find({“likes”:{$gte:50}}).pretty()

Not Equals {<key>:{$ne:<value>}} db.mycol. where likes '= 50

find({“likes”:{$ne:50}}).pretey()

MapReduce

LEARNING OBJECTIVES
After reading this chapter, you will be able to:

* Learn the need for MapReduce. * Learn MapReduce algorithm for relational
* Understand Map task, Reducer task and algebra operations.

Combiner task. * Learn MapReduce algorithm for matrix
* Learn various MapReduce functions. multiplication.

4.1 MapReduce and The New Software Stack

Businesses and governments need to analyze and process a tremendous amount of data in a very
short period of time. The processing is to be done on a large amount of data, which will take a huge
amount of time if done on a single machine. So the idea is to divide the data into smaller chunks
and send to a cluster of machines, where they can be processed simultaneously and then the results
can be combined.

Huge increase in data generated from social network and other blogging sites, for example, “Friends”
on social networking sites, has led to increase in the volume of graphic data with millions of nodes and
edges. This led to the creation of a new software stack. This new software stack provides parallelism
by using several commodity hardware connected by Ethernet or switches. Hadoop is a framework for
large-scale distributed batch processing. Hadoop can be deployed on a single machine if the data can
be handled by the machine, but it is mainly designed to efficiently distribute a large amount of data
for processing across a set of machines. Hadoop includes a distributed file system (DFS) that splits
the input data and sends these portions of the original data to several machines in the defined cluster
to hold. Main focus of this new software stack is MapReduce, a high-level programming system. This
helps in doing the computation of the problem in parallel using all the connected machines so that the
output, results are obtained in an efficient manner. DFS also provides data replication up to three times
to avoid data loss in case of media failures.

Figure 4.1 shows the role of client machines, Master and Slave Nodes in Hadoop deployment. The
MasterNode stores the huge data Hadoop Distributed File System (HDFS) and runs parallel computa-
tions on all that data (MapReduce).

70 . CHAPTER 4/ MAPREDUCE

Client
MapReduce HDFS
JobTracker NameNode
it | et~ Maglor s ol o e o s
Slaves
DataNode DataNode
TaskTracker . TaskTracker

Figure 4.1 Hadoop high-level architecture.

1. The NameNode coordinates and monitors the data storage function (HDES), while the
JobTracker coordinates the parallel processing of data using MapReduce.

2. SlaveNode does the actual work of storing the data and running the computations. Master-
Nodes give instructions to their SlaveNodes. Each slave runs both a DataNode and a TaskTracker
daemon that communicate with their respective MasterNodes.

3. The DataNode is a slave to the NameNode.
4. The TaskTracker is a slave to the JobTracker.

4.1.1 Distributed File Systems

Most scientific applications in the past, required to do parallel processing for fast computing, used
special-purpose computers. Web services enabled the use of commodity nodes (having RAM, CPU
and hard disk) to execute the chosen services independently on the nodes and this reduced the cost of
using special-purpose machines for parallel computing. In recent times, the new parallel-computing
architecture called cluster computing is in use. Compute nodes typically in the range of 8-64 are stored
in racks and are connected with each other by Ethernet or switch to the network. Failure at the node
level (disk failure) and at the rack level (network failure) is taken care of by replicating data in second-
ary nodes. All the tasks are completed independently and so if any task fails, it can be re-started without
affecting the other tasks.

File system stores data permanently. The system has logical drives and is layered on top of physical
storage medium. It is addressed by a file name under a directory that supports hierarchical nesting.
Access to the file is through file path consisting of drive, directory(s) and filename.

DFS supports access to files that are stored on remote servers. It also offers support for replication
and local caching. Concurrent access to files read/write has to be taken care of using locking conditions.
Different types of implementations are available based on the complexity of applications.

4.1 MAPREDUCE AND THE NEW SOFTWARE STACK o« 71

4.1.1.1 Google File System

Google had to store a massive amount of data. It needs a good DFS with cheap commodity
computers to reduce cost. These commodity computers are unreliable, hence redundant stor-
age is required to manage failures. Most of the files in Google file system (GES) are written only
once and sometimes appended. But it needs to allow large streaming reads and so high-sustained
throughput is required over low latency. File sizes are typically in gigabytes and are stored as
chunks of 64 MB each. Each of these chunks is replicated thrice to avoid information loss due
to the failure of the commodity hardware. These chunks are centrally managed through a single
master that stores the metadata information about the chunks. Metadata stored on the master has
file and chunk namespaces, namely, mapping of file to chunks and location of the replicas of each
chunk. Since Google users do a lot of streaming read of large data sets, caching has no importance
or benefit. What if the master fails? Master is replicated in shadow master. Also the master involve-
ment is reduced by not moving data through it; metadata from master is cached at clients. Master
chooses one of the replicas of chunk as primary and delegates the authority for taking care of the
data mutations.

4.1.1.2 Hadoop Distributed File System

HDES is very similar to GFS. Here, the master is called NameNode and shadow master is called
Secondary NameNode. Chunks are called blocks and chunk server is called DataNode. DataNode
stores and retrieves blocks, and also reports the list of blocks it is storing to NameNode. Unlike GFS,
only single-writers per file is allowed and no append record operation is possible. Since HDES is an
open-source, interface, libraries for different file systems are provided.

4.1.2 Physical Organization of Compute Nodes

Hadoop runs best on Linux machines. Hadoop is installed in client machines with all the cluster
settings. The client machine loads data and MapReduce program into the cluster, and then retrieves
or views the results once the program is executed. For smaller clusters, where the number of nodes
is less than 40, a single physical server can host both JobTracker and NameNode. For medium and
large clusters,both of them can be in different physical servers. The “server virtualization” or “hyper-
visor layer” adds to overhead and impedes the Hadoop performance. Hadoop does work in a virtual
machine. Cluster (with a few nodes) can be up and running in VMware Workstation on a laptop
machine.

4.1.2.1 Case Study

What problem does Hadoop solve? Businesses and governments have a large amount of data that needs
to be analyzed and processed very quickly. If this data is fragmented into small chunks and spread
over many machines, all those machines process their portion of the data in parallel and the results are
obtained extremely fast.

For example, a huge data file containing feedback mails is sent to the customer service department.
The objective is to find the number of times goods were returned and refund requested. This will help
the business to find the performance of the vendor or the supplier.

72 . CHAPTER 4/ MAPREDUCE

It is a simple word count exercise. The client will load the data into the cluster (Feedback.txt),
submit a job describing how to analyze that data (word count), the cluster will store the results in a new
file (Returned.txt), and the client will read the results file.

The client is going to break the data file into smaller “Blocks”, and place those blocks on different
machines throughout the cluster. Every block of data is on multiple machines at once to avoid data loss.
So each block will be replicated in the cluster as it is loaded. The standard setting for Hadoop is to have
(three) copies of each block in the cluster. This can be configured with the dfs.replication parameter in

the file hdfs-site.xml.

The client breaks Feedback.txt into three blocks. For each block, the client consults the NameNode
and receives a list of three DataNodes that should have a copy of this block. The client then writes the
block directly to the DataNode. The receiving DataNode replicates the block to other DataNodes, and
the cycle repeats for the remaining blocks. Two of these DataNodes, where the data is replicated, are
in the same rack and the third one is in another rack in the network topology to prevent loss due to
network failure. The NameNode as it is seen is not in the data path. The NameNode only provides the
metadata, that is, the map of where data is and where data should be in the cluster (such as IP address,
port number, Host names and rack numbers).

The client will initiate TCP to DataNode 1 and sends DataNode 1 the location details of the other
two DataNodes. DataNode 1will initiate TCP to DataNode 2, handshake and also provide DataNode
2 information about DataNode 3. DataNode 2 ACKs and will initiate TCP to DataNode 3, handshake
and provide DataNode 3 information about the client which DataNode 3 ACKs.

On successful completion of the three replications, “Block Received” reportis sent to the NameNode.
“Success” message is also sent to the Client to close down the TCP sessions. The Client informs the
NameNode that the block was successfully written. The NameNode updates its metadata info with the
node locations of Block A in Feedback.txt. The Client is ready to start the process once again for the
next block of data.

The above process shows that Hadoop uses a lot of network bandwidth and storage.

The NameNode not only holds all the file system metadata for the cluster, but also oversees the
health of DataNodes and coordinates access to data. The NameNode acts as the central controller of
HDEFS. DataNodes send heartbeats to the NameNode every 3 seconds via a TCP handshake using the
same port number defined for the NameNode daemon. Every 10® heartbeat is a Block Report, where
the DataNode tells the NameNode about all the blocks it has.

1. DataNode sends “hearts beat” or “block report”.
2. NameNode ACK.
3. DataNode acknowledges the ACK.

Every hour, by default the Secondary NameNode connects to the NameNode and copies the in-
memory metadata information contained in the NameNode and files that used to store metadata (both

4.1 MAPREDUCE AND THE NEW SOFTWARE STACK e 73

may and may not be in sync). The Secondary NameNode combines this information in a fresh set of
files and delivers them back to the NameNode, while keeping a copy for itself.

4.1.2.2 Receiving the Output

When a Client wants to retrieve the output of a job, it again communicates to the NameNode
and asks for the block locations of the results file. The NameNode in turn provides the Client a
unique list of three DataNodes for each block. Client chooses the first DataNode by default in
each list. Blocks are read sequentially. Subsequent blocks are read only after the previous block is
read completely.

DataNode requests the NameNode for location of block data. The NameNode will first check for
DataNode in the same rack. If it is present, the NameNode provides the in-rack location from which to
retrieve the data. This prevents the flow from traversing two more switches and congested links to find
the data (in another rack). With the data retrieved quicker in-rack, data processing can begin sooner
and the job completes that much faster.

4.1.2.3 Map Process
MapReduce is the parallel processing framework along with Hadoop, named after two important
processes: Map and Reduce.

Map process runs computation on their local block of data. The MapReduce program needs to
count the number of occurrences of the word “Refund” in the data blocks of Feedback.txt. Following
are the steps to do this:

1. Client machine submits the MapReduce job to the JobTracker, asking “How many times does
Refund occur in Feedback.xt?”

2. The JobTracker finds from the NameNode which DataNodes have blocks of Feedback.txt.

3. The JobTracker then provides the TaskTracker running on those nodes with the required Java
code to execute the Map computation on their local data.

4. The TaskTracker starts a Map task and monitors the tasks progress.

5. The TaskTracker provides heartbeats and task status back to the JobTracker.

6. As each Map task completes, each node stores the result of its local computation as “intermediate
data” in temporary local storage.

7. This intermediate data is sent over the network to a node running a Reduce task for final
computation.

Note: If the nodes with local data already have too many other tasks running and cannot accept
anymore, then the JobTracker will consult the NameNode whose Rack Awareness knowledge can sug-
gest other nodes in the same rack. In-rack switching ensures single hop and so high bandwidth.

160 . CHAPTER 7/LINK ANALYSIS

Google was the pioneer in this field with the use of a PageRank measure for ranking Web pages with
respect to a user query. Spammers responded with ways to manipulate PageRank too with what is called
Link Spam. Techniques like TrustRank were used for detecting Link Spam. Further, various variants of
PageRank are also in use to evaluate the Web pages.

This chapter provides the reader with a comprehensive overview of Link Analysis techniques.

/.2 History of Search Engines and Spam

The huge volume of information on the Web is essentially useless unless information can be discovered
and consumed by users. Earlier search engines fell into two broad categories:

1. Full-text index search engines such as AltaVista, Lycos which presented the user with a keyword
search interface. Given the scale of the Web and its growth rate, creating indexes becomes a her-
culean task.

2. Taxonomies based search engines where Web pages were organized in a hierarchical way based on
category labels. Example: Yahoo!. Creating accurate taxonomies requires accurate classification
techniques and this becomes impossible given the size of the Web and also its rate of growth.

As the Web became increasingly used in applications like e-selling, opinion forming, information pushing,
etc., web search engines began to play a major role in connecting users to information they require. In these
situations, in addition to fast searching, the quality of results returned by a search engine also is extremely
important. Web page owners thus have a strong incentive to create Web pages that rank highly in a search
query. This led to the first generation of spam, which means “manipulation of Web page content for the
purpose of appearing high up in search results for selected keywords”. Earlier search engines came up with
several techniques to detect spam, and spammers responded with a richer set of spam techniques.

Spamdexing is the practice of search engine spamming. It is a combination of Spamming with Indexing.
Search Engine Optimization (SEO) is an industry that attempts to make a Website attractive to the major
search engines and thus increase their ranking. Most SEO providers resort to Spamdexing, which is the
practice of creating Websites that will be illegitimately indexed with a high position in the search engines.

Two popular techniques of Spamdexing include “Cloaking” and use of “Doorway” pages.

1. Cloaking is the technique of returning different pages to search engines than what is being
returned to the people. When a person requests the page of a particular URL from the Website,
the site’s normal page is returned, but when a search engine crawler makes the same request, a
special page that has been created for the engine is returned, and the normal page for the URL is
hidden from the engine - it is cloaked. This results in the Web page being indexed by the search
engine under misleading keywords. For every page in the site that needs to be cloaked, another
page is created that will cause this page to be ranked highly in a search engine. If more than one

7.2 HISTORY OF SEARCH ENGINES AND SPAM e 161

search engine is being targeted, then a page is created for each engine, based on the criteria used
by the different engines to rank pages. Thus, when the user searches for these keywords and views
the selected pages, the user is actually seeing a Web page that has a totally different content than
that indexed by the search engine. Figure 7.1 illustrates the process of cloaking.

Show original page
with misleading
content
Is request from
human user or
search engine?
Crawler Show spam
page

Figure 7.1 The process of cloaking.

Some example situations for cloaking include:

* Rendering a page of HTML text to search engines which guarantee its high ranking. For exam-
ple, a Web site may be in the business of selling writing instruments. When a search engine
browses the site, all it can see would be text indicating history of writing instruments, paper,
etc. Thus, the site gets ranked highly for these concepts. The same site then shows a page of
images or Flash ads of writing instruments like pens, pencils to users (people) visiting the site.

 Stuffing relevant extra text or keywords into a page to increase its ranking only when the user-
agent requesting the page is a search engine, not a human visitor. Adding a term like “music”
to a page several thousand times increases its ranking in the music sub topic, and thus any
query about music would lead an user to the pen selling site as first choice.

“Doorway” pages are low-quality Web pages created with very little content, but are instead
stuffed with very similar keywords and phrases. They are designed to rank highly within the
search results, but serve no purpose to visitors looking for information. When a browser requests
the doorway page, it is redirected to a page containing content of a more commercial nature.
A dummy page with very specific keyword density is created and submitted with a redirect to a
commercial site. These pages are generally very ugly and would never pass human scrutiny. The
most recent method is to create a single frame and display the entire site through it. Software can
create thousands of pages for a single keyword in minutes.

162 . CHAPTER 7/LINK ANALYSIS

Other techniques used by spammers include meta-tag stuffing, scraper sites, article spinning, etc.
The interested reader can go through the references for more information on term spam.

The techniques used by spammers to fool search engines into ranking useless pages higher are called
as “Term Spam”. Term spam refers to spam perpetuated because search engines use the visibility of
terms or content in a Web page to rank them.

As a concerted effort to defeat spammers who manipulate the text of their Web pages, newer search
engines try to exploit the link structure of the Web - a technique known as link analysis. The first Web
search engine known to apply link analysis on a large scale was Google, although almost all current
Web search engines make use of it. But the war between search engines and spammers is far from over
as spammers now invest considerable effort in trying to manipulate the link structure too, which is now
termed link spam.

- 7.3 PageRank

One of the key concepts for improving Web search has been to analyze the hyperlinks and the graph
structure of the Web. Such link analysis is one of many factors considered by Web search engines in
computing a composite score for a Web page on any given query.

For the purpose of better search results and especially to make search engines resistant against term
spam, the concept of link-based analysis was developed. Here, the Web is treated as one giant graph:
The Web page being a node and edges being links pointing to this Web page. Following this concept,
the number of inbound links for a Web page gives a measure of its importance. Hence, a Web page is
generally more important if many other Web pages link to it. Google, the pioneer in the field of search
engines, came up with two innovations based on link analysis to combat term spam:

1. Consider a random surfer who begins at a Web page (a node of the Web graph) and executes a
random walk on the Web as follows. At each time step, the surfer proceeds from his current page
A to arandomly chosen Web page that A has hyperlinks to. As the surfer proceeds in this random
walk from node to node, some nodes will be visited more often than others; intuitively, these are
nodes with many links coming in from other frequently visited nodes. As an extension to this
idea, consider a set of such random surfers and after a period of time find which Web pages had
large number of surfers visiting it. The idea of PageRank is that pages with large number of visits
are more important than those with few visits.

2. The ranking of a Web page is not dependent only on terms appearing on that page, but some
weightage is also given to the terms used in or near the links to that page. This helps to avoid
term spam because even though a spammer may add false terms to one Website, it is difficult to
identify and stuff keywords into pages pointing to a particular Web page as that Web page may
not be owned by the spammer.

7.3 PAGERANK e 163

The algorithm based on the above two concepts first initiated by Google is known as PageRank.
Since both number and quality are important, spammers just cannot create a set of dummy low-quality
Web pages and have them increase the number of in links to a favored Web page.

In Google’s own words: PageRank works by counting the number and quality of links to a page to deter-
mine a rough estimate of how important the Website is. The underlying assumption is that more important
Websites are likely to receive more links from other Websites.

This section discusses the PageRank algorithm in detail.

7.3.1 PageRank Definition

PageRank is a link analysis function which assigns a numerical weighting to each element of a hyper-
linked set of documents, such as the WWW. PageRank helps in “measuring” the relative importance
of a document (Web page) within a set of similar entities. The numerical weight that it assigns to any

given element £ is referred to as the PageRank of E and denoted by PR(E). The PageRank value of a Web
page indicates its importance - higher the value more relevant is this Webpage.

A hyperlink to a page counts as a vote of support. The PageRank of a page is defined recursively and
depends on the number and PageRank metric of all pages that link to it (“incoming links”). A page that
is linked to by many pages with high PageRank receives a high rank itself.

We can illustrate the simple computation for pageRank using the Web graph model depicted in
Fig. 7.2. The figure shows a tiny portion of the Web with five pages 1, 2, 3, 4, and 5. Directed arcs
indicate links between the pages. For example, in the figure, the links coming into page 5 are backlinks
(inlinks) for that page and links going out from page 5 are called outlinks. Pages 4 and 1 have a single
backlink each, pages 2 and 3 have two backlinks each, and page 5 has three backlinks.

Figure 7.2 A hypothetical web graph.

164 . CHAPTER 7/LINK ANALYSIS

Let us consider a random surfer who begins at a Web page (a node of the Web graph) and
executes a random walk on the Web as follows. At each time step, the surfer proceeds from his cur-
rent page to a randomly chosen Web page that it has hyperlinks to. So in our figure, the surfer is at
a node 1, out of which there are two hyperlinks to nodes 3 and 5; the surfer proceeds at the next
time step to one of these two nodes, with equal probabilities 1/2. The surfer has zero probability of
reaching 2 and 4.

We can create a “Transition Matrix” “M” of the Web similar to an adjacency matrix representa-
tion of a graph, except that instead of using Boolean values to indicate presence of links, we indicate
the probability of a random surfer reaching that node from the current node. The matrix A is an
n X n matrix if there are 7 Web pages. For a Web page pair (P, Pj), the corresponding entry in M (row

i column j) is
1

M(z',j)zk

where £ is the number of outlinks from 7; and one of these is to page P;, otherwise M(z j) = 0. Thus,
for the Web graph of Fig. 7.2, the following will be the matrix A

(0 1 0 0 0]
oooll
3 2

1 1
— 00 - 0

M,=|» 3 (7.1)

ooool
2
l0110
12 3]

We see that column 2 represents node 2, and since it has only one outlink to node 1, only first row has
a 1 and all others are zeroes. Similarly, node 4 has outlinks to node 2, 3, and 5 and thus has value 1/3
to these nodes and zeroes to node 1 and 4.

7.3.2 PageRank Computation

We know that the PageRank value of a page depends on how important that page is. To compute how
important a page is we need to know the probability that a random surfer will land at that page and
higher the probability, the more important the page.

To determine the location of a random surfer, we use a column vector v of size # where 7 is the
number of WebPages. The ;™ component of this vector v is the probability that the surfer is at page ;.
This probability is nothing but an indication of PageRank value of that page.

7.3 PAGERANK e 165

1.

Initially the surfer can be at any of the 7 pages with probability 1/7. We denote it as follows:

1/ 7]
1/n
1/n
_l/nd

Consider M, the transition matrix. When we look at the matrix M5 in Eq. (7.1), we notice two
facts: the sum of entries of any column of matrix M is always equal to 1. Further, all entries
have values greater or equal to zero. Any matrix possessing the above two properties is called as
a matrix of a Markov chain process, also called Markov transition matrix. At any given instant of
time, a process in a Markov chain can be in one of the /V states (in a Web set up a state is a node
or Web page). Then, the entry 7, in the matrix M gives us the probability that 7 will be the next
node visited by the surfer, provided the surfer is at node currently. Because of the Markov prop-
erty, the next node of the surfer only depends on the current node he is visiting. Recall that this
is exactly the way we have designed the Transition matrix in Section 7.3.1.

If vector v shows the probability distribution for the current location, we can use v and M to get
the distribution vector for the next state as x = Mv. Say currently the surfer is at node ;. Then, we
have

X =M><v].=2mij><vj (7.2)
J

Here v; is the column vector giving probability that current location is j for every node 1 to 7.
Thus after first step, the distribution vector will be Muy,. After two steps, it will be M(Muyj).

Continuing in this fashion after 4 steps the distribution vector for the location of the random
surfer will be M *(Mu,).

This process cannot continue indefinitely. If a Markov chain is allowed to run for many time
steps, the surfer starts to visit certain Web pages (say, a popular stock price indicator site) more
often than other pages and slowly the visit frequency converges to fixed, steady-state quantity.
Thus, the distribution vector v remains the same across several steps. This final equilibrium state
value in v is the PageRank value of every node.

For a Markov chain to reach equilibrium, two conditions have to be satisfied, the graph must
be strongly connected and there must not exist any dead ends, that is, every node in the graph
should have at least one outlink. For the WWW this is normally true. When these two condi-
tions are satisfied, for such a Markov chain, there is a unique steady-state probability vector, that
is, the principal left eigenvector of the matrix representing the Markov chain.

166 - CHAPTER 7/LINK ANALYSIS

In our case we have v as the principal eigenvector of matrix M. (An eigenvector of a matrix M is
a vector v that satisfies v = BMv for some constant eigenvalue f3.) Further, because all columns of
the matrix M total to 1, the eigenvalue associated with this principle eigenvector is also 1.

Thus to compute PageRank values of a set of WebPages, we must compute the principal left eigenvector
of the matrix M with eigenvalue 1. There are many algorithms available for computing left eigenvec-
tors. But when we are ranking the entire Web, the size of the matrix M could contain a billion rows and
columns. So a simple iterative and recursive algorithm called the Power method is used to compute the
eigenvalue. It is calculated repetitively until the values in the matrix converge. We can use the following
equation to perform iterative computations to calculate the value of PageRank:

x5, = M H(Muy) (7.3)

After a large number of steps, the values in x;, settle down where difference in values between two
different iterations is negligible below a set threshold. At this stage, the values in vector x;, indicate the
PageRank values of the different pages. Empirical studies have shown that about 60-80 iterations cause
the values in x;, to converge.

Example 1

Let us apply these concepts to the graph of Fig. 7.2 represented by the matrix M5 as shown before.
As our graph has five nodes

(1/5]
1/5
v, =|1/5
1/5
[1/5

If we multiply v, by matrix Ms repeatedly, after about 60 iterations we get converging values as

(1/5][1/5 [1/6] [0.4313]
1/5(1/6 ||13/60 0.4313
1/5(1/6 || 2/15 [+ eeveen 0.3235
1/5| 1/10 || 11/60 0.3235
(1/5][11/30]| 3/10 | 0.6470

Thus Page 1 has PageRank 0.4313 as does Page 2. Pages 3 and 4 have PageRank 0.3235 and Page 5
has the highest PageRank of 0.6470.

7.3 PAGERANK e 167

7.3.3 Structure of the Web

One of the assumptions made for using the concept of Markov processes to compute PageRank is that
the entire Web is one giant strongly connected entity. Theoretically a surfer starting at any random Web
page can visit any other Web page through a set of links.

But one study conducted in 2000 threw up some surprising results. Researchers from IBM, the
AltaVista search engine and Compaq Systems in 2000 conducted a comprehensive study to map the
structure of the Web. They analyzed about 200 million Web pages and 1.5 billion hyperlinks. Andrei
Broder, AltaVista’s Vice President of research at that time and lead author of the study proclaimed that
“The old picture — where no matter where you start, very soon you will reach the entire Web — is not
quite right.”

Older models of the Web had always portrayed its topology as a cluster of sites connected to other
clusters and all forming one Strongly Connected Component (SCC). An SCC can be defined as a sub-
graph of a graph where a path exists between every pair of nodes in the sub-graph. Further, this is the
maximal sub-graph with this property. But the results of the study present a different picture of the
Web. The Web, according to the study, consists of three distinct regions:

1. One large portion called as “Core” which is more or less strongly connected so as to form an
SCC. Web surfers in the Core can reach any Webpage in the core from any other Webpage in the
core. Mostly this is the region of the Web that most surfers visit frequently.

2. A portion of the Web consisted of Web Pages that had links that could lead to the SCC but
no path from the SCC led to these pages. This region is called the IN-Component and then
pages are called IN pages or “Origination” Pages. New Web Pages or Web Pages forming closed

communities belong to this component.

3. Another set of nodes exist that can be reached from the SCC but do not have links that can
ultimately lead to a Webpage in the SCC. This is called the “Out” component and the Web Pages
“Out” pages or “termination” pages. Many corporate sites, e-commerce sites, etc. expect the SCC
to have links to reach them but do not really need links back to the core.

Figure 7.3 shows the original image from the study conducted by Broder ez a/. Because of the visual
impact the picture made, they termed this as the “bow-tie picture” of the Web, with the SCC as the
central “knot”. Figure 7.3 also shows some pages that belong to none of IN, OUT, or SCC. These are
further classified into:

1. Tendrils: These are pages that do not have any inlinks or outlinks to/from the SCC. Some
tendrils consist of pages reachable from the in-component but not SCC and some other tendrils
can reach the out-component but not from the SCC.

2. Tubes: These are pages that reach from in-component to the out-component without linking to

any pages in the SCC.

168 . CHAPTER 7/LINK ANALYSIS

: ouT

IN

SCC <

! l

Disconnected

Figure 7.3 Bow-tie structure of the web (Broder ez al.).

The study further also discussed the size of each region and it was found that perhaps the most
surprising finding is the size of each region. Intuitively, one would expect the core to be the larg-
est component of the Web. It is, but it makes up only about one-third of the total. Origination
and termination pages both make up about a quarter of the Web, and disconnected pages about

one-fifth.

As a result of the bow-tie structure of the Web, assumptions made for the convergence of the
Markov process do not hold true causing problems with the way the PageRank is computed. For
example, consider the out-component and also the out-tendril of the in-component; if a surfer lands
in either of these components he can never leave out, so probability of a surfer visiting the SCC or the
in-component is zero from this point. This means eventually pages in SCC and in-component would
end up with very low PageRank. This indicates that the PageRank computation must take the structure
of the Web into consideration.

There are two scenarios to be taken care of as shown in Fig. 7.4:
1. Dead ends: These are pages with no outlinks. Effectively any page that can lead to a dead end

means it will lose all its PageRank eventually because once a surfer reaches a page that is a dead
end no other page has a probability of being reached.

2. Spider traps: These are a set of pages whose outlinks reach pages only from that set. So eventu-
ally only these set of pages will have any PageRank.

7.3 PAGERANK e 169

Dead end

Spider trap

Figure 7.4 Dead end and spider trap.

In both the above scenarios, a method called “taxation” can help. Taxation allows a surfer to leave the
Web at any step and start randomly at a new page.

7.3.4 Modified PageRank

One problem we have to solve is the problem of dead ends. When there are dead ends, some columns
of the transition matrix M will not sum to 1, they may be 0. For such a matrix where values may sum
up to at most 1, the power operation used to generate the ranking vector will result in some or all
components reaching 0.

M- resultsin V— 0

A simple example can illustrate this. Consider a 3-node network P, Q and R and itsassociated transition
matrix. Since R is dead, eventually all PageRank leaks out leaving all with zero PageRank.

X, | [1/3][2/6][3/12][5/24 0
X, |=(1/3|[1/6||2/12|| 3/24 |-+ -e-- 0
X.| [1/3]|3/6]||7/12|[16/24 1

All the PageRank is trapped in R. Once a random surfer reaches R, he can never leave. Figure 7.5 illus-
trates this.

We now propose modifications to the basic PageRank algorithm that can avoid the above two
scenarios as described in the following subsections.

170 . CHAPTER 7/LINK ANALYSIS

Pl12|1/2| O
‘ e Q|12 0] 0

Figure 7.5 A simple Web Graph and its associated transition matrix.

R| 0 [12| O

7.3.4.1 Dealing with Dead Ends

We can remove nodes that are dead ends. “Remove” all pages with no outgoing links and remove their
in links too. This is a repetitive operation; removing some pages may lead to other pages becoming dead
ends. So, recursively we may require to remove more pages ultimately stopping when we land up with

an SCC. Name this graph G.

Keep track of the order in which the pages were removed, and in what iteration, because we must
eventually restore the graph in reverse order. Now using any method, compute the PageRank of graph
G. Now we have to restore the graph by putting back the links and the nodes removed as dead ends.
We restore nodes in the reverse order in which they were deleted. The last set of nodes to be deleted

will be those whose in links are directly from SCC. All the nodes in the SCC have their PageRank

computed.

When we put a dead end page back in, we can compute its PageRank as the sum of PageRanks it
receives from each of its inlinks in the SCC. Each inlink will contribute to the dead end page its own
PageRank divided by the number of outgoing links for that page.

Example 2

Consider Fig. 7.6.

1. Part (a) shows a portion of a Web graph where A is part of the SCC and B is a dead end. The
self-loop of A indicates that A has several links to pages in SCC.

| 2. In part (b), the dead end B and its links are removed. PageRank of A is computed using any
method.

3. In part (c), the dead end last removed, that is B, is put back with its connections. B will use A to
get its PageRank. Since A now has two outlinks, its PageRank is divided into 2 and half this rank
is propagated to B.

4. In part (d), A has two outlinks and C has three outlinks and both propagate 1/2 and 1/3 of their
PageRank values to B. Thus, B gets the final PageRank value as shown. In part (d), A is having a
PR value of 2/5 and C has 2/7 leading to B obtaining a PR value of 31/105.

7.3 PAGERANK e 171

m 1 2
A — > B A B
(a) (b)
1
1/2
(1/2) of 1
A » B
B gets (1/2) A Value
()
\ B gets (1/2) A Value PR =(1/2) * (2/5) + (1/3) * (2/7) = 31/105
A -
PR =2/5 >
PR = 2/7 B gets (1/3) C Value
« (@)

Figure 7.6 Computing PageRank for dead end pages.

7.3.4.2 Avoiding Spider Traps

As we recall, a spider trap is a group of pages with no links out of the group. We have illustrated earlier
that in a spider trap all PageRank value will eventually be “trapped” by the group of pages.

To address this issue, we introduce an additional operation for our random surfer: the zeleport
operation. In the teleport operation, the surfer jumps from a node to any other node in the Web graph.
Thus, the random surfer, instead of always following a link on the current page, “teleports” to a random
page with some probability — Or if the current page has no outgoing links.

In assigning a PageRank score to each node of the Web graph, we use the teleport operation in two
ways:
1. When a node has no outlinks, the surfer can invoke the teleport operation with some probability.

2. Ifa node has outgoing links, the surfer can follow the standard random walk policy of choosing
any one of the outlinks with probability 0 < B < 1 and can invoke the teleport operation with
probability 1 — B, where Bis a fixed parameter chosen in advance.

172 - CHAPTER 7/LINK ANALYSIS

Typical values for 8 might be 0.8-0.9. So now the modified equation for computing PageRank
iteratively from the current PR value will be given by

v = BMv+ (1 - B)eln

where M is the transition matrix as defined earlier, v is the current PageRank estimate, ¢ is a vector of
all ones and 7 is the number of nodes in the Web graph.

Consider the same Web graph example shown earlier in 7.5 (we repeat the graph for clarity). The
following shows the new PageRank computations with = 0.8.

’G PlQ|R
‘ P({1/2|1/2] O
7 Ql1/2({ 0| O
@ G R| 0 |1/2| 1
PIQ| R PIQ|R P Q R
0.8y Pl172]1/2] 0|+ 0.2)*| P|1/3|1/3|1/3] = | P| 7/15] 7/15] 1/15
al12l o] o al1/3|173|1/3 Ql 7/15| 1/15| 1/15
Rl 0 |1/2] 1 R|1/3|1/3|1/3 R| 1/15| 7/15|13/15
Eventually
X, | [1][1.00][0.84][0.776] 7133 |
X, [=[11/0.60|0.60 |{ 0.536 |-+ -+ 5/33
X.| [1]|1.40][1.56 [[1.688 21/33

This indicates that the spider trap has been taken care of. Even though R has the highest PageRank,

its effect has been muted as other pages have also received some PageRank.

7.3.5 Using PageRank in a Search Engine

The PageRank value of a page is one of the several factors used by a search engine to rank Web pages
and display them in order of ranks in response to an user query. When a user enters a query, also called a
search, into Google, the results are returned in the order of their PageRank. The finer details of working
of Google’s working are proprietary information.

Google utilizes a number of factors to rank search results including standard Information Retrieval
measures, proximity, anchor text (text of links pointing to Web pages), and PageRank. According to
Sergei and Brin, the designers of PageRank measure and creators of Google, at inception, the ranking of

7.4 EFFICIENT COMPUTATION OF PAGERANK e 173

Web pages by the Google search engine was determined by three factors: Page specific factors, Anchor
text of inbound links, PageRank.

Page-specific factors include the body text, for instance, the content of the title tag or the URL of
the document. In order to provide search results, Google computes an IR score out of page-specific fac-
tors and the anchor text of inbound links of a page. The position of the search term and its weightage
within the document are some of the factors used to compute the score. This helps to evaluate the rel-
evance of a document for a particular query. The IR-score is then combined with PageRank to compute
an overall importance of that page.

In general, for queries consisting of two or more search terms, there is a far bigger influence of
the content-related ranking criteria, whereas the impact of PageRank is more for unspecific single
word queries. For example, a query for “Harvard” may return any number of Web pages which
mention Harvard on a conventional search engine, but using PageRank, the university home page
is listed first.

Currently, it is estimated that Google uses about 250 page-specific properties with updated versions
of the PageRank to compute the final ranking of pages with respect to a query.

/.4 Efficient Computation of PageRank

Essentially the implementation of PageRank is very simple. The sheer size of the Web, however, requires
much greater care in the use of data structures. We need to perform a matrix and vector multiplication
of very large matrices about 50-80 times. This is computationally very expensive.

The algorithm naturally lends itself to a MapReduce (MR) type of scenario. But before we use the
MR paradigm, it is also possible to have a more efficient representation of the transition matrix M

depicting the Web graph. Further, the use of Combiners with MR helps avoid thrashing.

7.4.1 Efficient Representation of Transition Matrices

Let us consider the structure of a Web graph more precisely. It is typical for a search engine to ana-
lyze billions of pages with respect to a query. On an average, a page may have a maximum of 10-15
outlinks. If the page happens to be a doorway page to other pages, a maximum of 25-30 outlinks may
exist. When a transition matrix is constructed for computation of PageRank, the matrix will be a billion
rows and a billion columns wide. Further, most of the entries in this giant matrix will be zero. Thus, the
transition matrix tends to be a very sparse matrix. The storage required to store this matrix is quadratic
in the size of the matrix. We can definitely find a more efficient way of storing the transition data by
considering only the non-zero values.

One way will be to just list all the non-zero outlinks of a node and their values. This method will
need space linear in the number of non-zero entries; 4 byte integers for the node value and 8 byte float-
ing point number for the value of the link. But we can perform one more optimization for a transi-

SUMMARY - 189

Generally, after a number of iterations, the authority and hub scores do not vary much and can be
considered to have “converged”.

HITS algorithm and the PageRank algorithm both make use of the link structure of the Web
graph to decide the relevance of the pages. The difference is that while the PageRank is query indepen-
dent and works on a large portion of the Web, HITS only operates on a small subgraph (the seed SQ)
from the Web graph.

The most obvious strength of HITS is the two separate vectors it returns, which allow the applica-
tion to decide on which score it is most interested in. The highest ranking pages are then displayed to
the user by the query engine.

This sub-graph generated as seed is query dependent; whenever we search with a different query
phrase, the seed changes as well. Thus, the major disadvantage of HITS is that the query graph must be
regenerated dynamically for each query.

Using a query-based system can also sometimes lead to link spam. Spammers who want their Web
page to appear higher in a search query, can make spam farm pages that link to the original site to give

it an artificially high authority score.

- Summary

As search engines become more and more
sophisticated, to avoid being victims of
spam, spammers also are finding innovative
ways of defeating the purpose of these search
engines. One such technique used by modern
search engines to avoid spam is to analyze
the hyperlinks and the graph structure of the
Web for ranking of Web search results. This
is called Link Analysis.

Early search engines were mostly text based
and susceptible to spam attacks. Spam
means “manipulation of Web page content
for the purpose of appearing high up in

search results for selected keywords”.

Toattack text-based search engines, spammers
resorted to term based spam attacks like
cloaking and use of Doorway pages.

Google, the pioneer in the field of search
engines, came up with two innovations based
on Link Analysis to combat term spam and

called their algorithm PageRank.

The basic idea behind PageRank is that the
ranking of a Web page is not dependent only
on terms appearing on that page, but some
weightage is also given to the terms used in
or near the links to that page. Further pages
with large no of visits are more important
than those with few visits.

To compute PageRank, “Random Surfer
Model” was used. Calculation of PageRank
can be thought of as simulating the behavior
of many random surfers, who each start at
a random page and at any step move, at
random, to one of the pages to which their

190 -

CHAPTER 7/LINK ANALYSIS

current page links. The limiting probability
of a surfer being at a given page is the

PageRank of that page.

An iterative matrix based algorithm was
proposed to compute the PageRank of a page
efficiently.

The PageRank algorithm could be
compromised due to the bow—tie structure
of the Web which leads to two types of
problems, dead ends and spider traps.

Using a scheme of random teleportation,
PageRank can be modified to take care of
dead ends and spider traps.

To compute the PageRank of pages on
the Web efficiently, use of MapReduce is
advocated. Further schemes of efficiently
storing the transition matrix and the
PageRank vector are described.

In Topic-Sensitive PageRank, we bias
the random walker to teleport to a set of
topic-specific relevant nodes. The topic is
determined by the context of the search
query. A set of PageRank vectors, biased
using a set of representative topics, helps
to capture more accurately the notion of
importance with respect to a particular topic.
This in turn yields more accurate search
results specific to a query.

Link spam can be formally stated as a class of
spam techniques that try to increase the link-
based score of a target Web page by creating
lots of spurious hyperlinks directed towards
it. These spurious hyperlinks may originate
from a set of Web pages called a Link farm

and controlled by the spammer. They may
be created from a set of partner Web sites
known as link exchange. Sometimes such
links could also be placed in some unrelated
Websites like blogs or marketplaces. These

structures are called Spam farms.

Search engines can respond to link spam
by mining the Web graph for anomalies
and propagating a chain of distrust from
spurious pages which will effectively lower
the PageRank of such pages. TrustRank
and Spam mass are two techniques used to
combat Link Spam.

In a parallel development along with
PageRank, another algorithm to rank pages
in relation to a query posed by a user was
proposed. This algorithm also used the link
structure of the Web in order to discover and
rank pages relevant for a particular topic.
The idea was to associate two scores with
each Web page, contributions coming from
two different types of pages called “hubs”
and “authorities”. This algorithm is called
hyperlink-induced topic search (HITS).
HITS presently is used by the Ask search
engine (www.Ask.com). Further itis believed
that modern information retrieval engines
use a combination of PageRank and HITS
for query answering,.

Calculation of the hubs and authorities scores
for pages depends on solving the recursive
equations: “a hub links to many authorities,
and an authority is linked to by many hubs”.
The solution to these equations is essentially
an iterated matrix—vector multiplication, just

like PageRanks.

EXERCISES

e 191

- Exercises

1. Consider the portion of a Web graph shown
below.

(@) Compute the hub and authority scores
for all nodes.

(b) Does this graph contain spider traps?
Dead ends? If so, which nodes?

(c) Compute the PageRank of the nodes
without teleportation and with telepor-
tation = 0.8.

2. Compute hub and authority scores for the
following Web-graph:

3. Let the adjacency matrix for a graph of four

vertices (71 to n4) be as follows:

— —

0

ke pd

S O O -
O O = =

0
1
._0 —

Calculate the authority and hub scores for
this graph using the HITS algorithm with
k = 6, and identify the best authority and
hub nodes.

. Can a Website’s PageRank ever increase?

What are its chances of decreasing?

. Given the following HITS scoring vector,

normalize x for the next iteration of the
algorithm:
3.12

4.38
6.93
3.41
1.88

| 4.53

. Consider the Web graph given below with

six pages (A, B, C, D, E, F) with directed
links as follows:

e A—>B,C

e B>AD,EF

e Co>AF

Assume that the PageRank values for any
page m at iteration 0 is PR(m) = 1 and tele-
portation factor for iterations is B = 0.85.
Perform the PageRank algorithm and deter-
mine the rank for every page at iteration 2.

192 -

CHAPTER 7/LINK ANALYSIS

7. Consider a Web graph with three nodes 1,

2, and 3. The links are as follows: 1 — 2, 3
— 2,2 —1, 2 —> 3. Write down the transi-
tion probability matrices for the surfer’s walk
with teleporting, for the following three val-
ues of the teleport probability:

(@ =0
(b) B=0.5
(© p=1

- Programming Assignments

8.

10.

Compute the PageRank of each page in the
following graph without taxation and with
taxation factor of 0.8.

For all the Web graphs discussed in the
exercises, represent the transition matrices
and the PageRank vector using methods dis-
cussed in Section 7.3.

Compute the TopicSensitive PageRank for

the graph of Exercise 2 assuming the teleport
set is: (A, C, E, F) only.

1. Implement the following algorithms on

standard datasets available on the web. The
input will normally be in the form of sparse
matrices representing the webgraph.

(a) Simple PageRank Algorithm
(b) PageRank algorithm with a telepor-

tation factor to avoid dead-ends and
spider traps.

. Describe how you stored the connectivity
matrix on disk and how you computed the
transition matrix. List the top-10 pages as
returned by the algorithms in each case.

- References

3. Now rewrite portions of the code to imple-

ment the TrustRank algorithm. The user will
specify which pages (indices) correspond to
trustworthy pages. It might be good to look
at the URLs and identify reasonable candi-
dates for trustworthy pages.

. Implement Assignments 1 and 3 using Map-

Reduce.

. Implement HITS algorithm any webgraph

using MapReduce.

1. C.D. Manning, P. Raghavan, H. Schiitze

(2008). Introduction to Information Retrieval.

Website: http://informationretrieval.org/;
Cambridge University Press.

REFERENCES e 193

2. D. Easley, J. Kleinberg (2010). Networks, 5. T. Haveliwala (2002). Topic-sensitive Page-
Crowds, and Markets: Reasoning about a Rank. In Proceedings of the Eleventh Interna-
Highly Connected World. Cambridge Uni- tional Conference on World Wide Web, 2002.
versity Press. Complete preprint on-line at
htep://www.cs.cornell.edu/home/kleinber/
networks-book/.

6. J. Kleinberg (1998). Authoritative Sources in
a Hyperlinked Environment. In Proc. ACM-
SIAM Symposium on Discrete Algorithms.

3. Page, Lawrence and Brin, Sergey and Mot-
wani, Rajeev and Winograd, Terry (1999)
The PageRank Citation Ranking: Bringing
Order to the Web. Technical Report. Stanford
InfoLab.

7. A. Broder, R. Kumar, F. Maghoul et al.
(2000). Graph structure in the Web, Com-
puter Networks, 33:1-6, pp. 309-320.

4. T. Haveliwala. Efficient Computation of
PageRank. Tech. rep., Stanford University,
1999.

Frequent Itemset Mining

LEARNING OBJECTIVES
After reading this chapter, you will be able to:

Review your knowledge about frequent
itemsets and basic algorithms to identify
them.

Learn about different memory efficient
techniques to execute the traditional FIM
algorithms.

Understand how these algorithms are

Learn about the algorithm of Park, Chen
and Yu, and its variants.

Understand the sampling-based SON
Algorithm and how it can be parallelized
using MapReduce.

Learn some simple stream-based frequent
itemset mining methods.

insufficient to handle larger datasets.

8.1 Introduction

Frequent itemsets play an essential role in many data mining tasks where one tries to find interesting
patterns from databases, such as association rules, correlations, sequences, episodes, classifiers, clusters
and many more. One of the most popular applications of frequent itemset mining is discovery of asso-
ciation rules. The identification of sets of items, products, symptoms, characteristics and so forth that
often occur together in the given database can be seen as one of the most basic tasks in data mining,.
This chapter discusses a host of algorithms that can be effectively used to mine frequent itemsets from
very massive datasets.

This chapter begins with a conceptual description of the “market-basket” model of data. The
problem of deriving associations from data was first introduced using the “market-basket” model of
data, which is essentially a many-many relationship between two kinds of elements, called “items” and
“baskets”. The frequent-itemsets problem is that of finding sets of items that appear in (are related to)
many of the same baskets.

The problem of finding frequent itemsets differs from the similarity search discussed in Chapter 5.
In the frequent itemset scenario, we attempt to discover sets of items that are found in the same bas-
kets frequently. Further we need the number of such buckets where these items appear together to

196 . CHAPTER 8/FREQUENT ITEMSET MINING

be sufficiently large so as to be statistically significant. In similarity search we searched for items that
have a large fraction of their baskets in common, even if the absolute number of such baskets is small
in number.

Many techniques have been invented to mine databases for frequent events. These techniques work
well in practice on smaller datasets, but are not suitable for truly big data. Applying frequent itemset
mining to large databases is a challenge. First of all, very large databases do not fit into main memory.
For example consider the well-known Apriori algorithm, where frequency counting is achieved by
reading the dataset over and over again for each size of candidate itemsets. Unfortunately, the memory
requirements for handling the complete set of candidate itemsets blows up fast and renders Apriori-
based schemes very inefficient to use on large data.

This chapter proposes several changes to the basic Apriori algorithm to render it useful for large
datasets. These algorithms take into account the size of the main memory available.

Since exact solutions are costly and impractical to find in large data, a class of approximate algo-
rithms is discussed which exploit parallelism, especially the Map-Reduce concept. This chapter also
gives a brief overview of finding frequent itemsets in a data stream.

8.2 Market-Basket Model

“Market-Baskets” is an abstraction that models any many-many relationship between two
concepts: “items” and “baskets”. Since the term a “market-basket” has its origin in retail applica-
tions, it is sometimes called “transactions”. Each basket consists of a set of items (an itemset), and
usually we assume that the number of items in a basket is small — much smaller than the total
number of items. The number of baskets is usually assumed to be very large, bigger than what can
fit in main memory.

Items need not be “contained” in baskets. We are interested in the co-occurrences of items related
to a basket, not vice-versa. For this purpose, we define basket data in general terms. Let /= {7}, ..., 7}
be a set of £ elements, called items. Let B= {4y, ..., &,} be a set of 7 subsets of 7. We call each b, c /
a basket of items. For example, in a retail market-basket application, the set / consists of the items
stocked by a retail outlet and each basket is the set of purchases from one register transaction; on the
other hand, in a document basket application, the set / contains all dictionary words and proper nouns,
while each basket is a single document in the corpus and each basket consists of all words that occur in
that document.

8.2.1 Frequent-ltemset Mining

Let /=17, ..., i;} be a set of items. Let D, the task-relevant data, be a set of database transactions
where each transaction 7 is a set of items such that 7 c /. Each transaction is associated with an

8.2 MARKET-BASKET MODEL e 197

identifier, called TID. Let A be a set of items. A transaction 7 is said to contain A if and only if
Ac T

A set of items is referred to as an itemset. An itemset that contains 4 items is a A-itemset. For
example, consider a computer store with computer-related items in its inventory. The set {computer,
anti-virus software, printer, flash-drive} is a 4-itemset. The occurrence frequency of an itemset is the
number of transactions that contain the itemset. This is also known, simply, as the frequency, support
count, or count of the itemset. We can call an itemset / a “frequent itemset” only if its support count is
sufficiently large. We prescribe a minimum support s and any I which has support greater than or equal
to s is a frequent itemset.

Example 1

Items= {milk (m), coke (c), pepsi (p), beer (b), juice (j)}
Minimum support s= 3
Transactions

1. T1 ={m, ¢, b}
2. T2={m, p, j}
3. T3 ={m, b}

. T4={c, j}

. T5={m, p, b}

. T7=1{c, b, j}

4
5

6. T6=1{m, c,b, j}
7

8. TS =1{b,)

Frequent itemsets: {m}, {c}, {b}, {j}, {m, b}, {c, b}, {j, ¢}.

8.2.2 Applications

A supermarket chain may have 10,000 different items in its inventory. Daily millions of customers will
push their shopping carts (“market-baskets”) to the checkout section where the cash register records
the set of items they purchased and give out a bill. Each bill thus represents one market-basket or one
transaction. In this scenario, the identity of the customer is not strictly necessary to get useful informa-
tion from the data. Retail organizations analyze the market-basket data to learn what typical customers

buy together.

198 -« CHAPTER 8/FREQUENT ITEMSET MINING

Example 2

Consider a retail organization that spans several floors, where soaps are in floor 1 and items like

towels and other similar goods are in floor 10. Analysis of the market-basket shows a large number of

baskets containing both soaps and towels. This information can be used by the supermarket manager
in several ways:

1. Apparently, many people walk from where the soaps are to where the towels is which means they
have to move form floor 1, catch the elevator to move to floor 10. The manger could choose to
put a small shelf in floor 1 consisting of an assortment of towels and some other bathing acces-
sories that might also be bought along with soaps and towels, for example, shampoos, bath mats
etc. Doing so can generate additional “on the spot” sales.

2. The store can run a sale on soaps and at the same time raise the price of towels (without adver-
tising that fact, of course). People will come to the store for the cheap soaps, and many will
need towels too. It is not worth the trouble to go to another store for cheaper towels, so they
buy that too. The store makes back on towels what it loses on soaps, and gets more customers

into the store.

While the relationship between soaps and towels seems somewhat obvious, market-basket analysis may
identify several pairs of items that occur together frequently but the connections between them may be
less obvious. For example, the analysis could show chocolates being bought with movie CDs. But we
need some rules to decide when a fact about co-occurrence of sets of items can be useful. Firstly any
useful set (need not be only pairs) of items must be bought by a large number of customers. It is not
even necessary that there be any connection between purchases of the items, as long as we know that

lots of customers buy them.

Example 3 Online Commerce

An E-Retail store like E-bay or Amazon.com offers several million different items for sale through
its websites and also cater to millions of customers. While normal offline stores, such as the super-
market discussed above, can only make productive decisions when combinations of items are pur-
chased by very large numbers of customers, online sellers have the means to tailor their offers even
to a single customer. Thus, an interesting question is to find pairs of items that many customers
have bought together. Then, if one customer has bought one of these items but not the other, it
might be good for Amazon or E-bay to advertise the second item when this customer next logs in.
We can treat the purchase data as a market-basket problem, where each “basket” is the set of items
that one particular customer has ever bought. But there is another way online sellers can use the
same data. This approach, called “collaborative filtering”, finds sets of customers with similar pur-
chase behavior. For example, these businesses look for pairs, or even larger sets, of customers who

206 - CHAPTER 8/FREQUENT ITEMSET MINING

Example 7

One example of a market-basket file could look like:

{23, 45, 11001} {13, 48, 92, 145, 222} {...

Here, the character “{” begins a basket and the character “}” ends it. The items in a basket are repre-
sented by integers, and are separated by commas.

Since such a file (Example 7) is typically large, we can use MapReduce or a similar tool to divide the
work among many machines. But non-trivial changes need to be made to the frequent itemset count-

ing algorithm to get the exact collection of itemsets that meet a global support threshold. This will be
addressed in Section 8.4.3.

For now we shall assume that the data is stored in a conventional file and also that the size of the
file of baskets is sufficiently large that it does not fit in the main memory. Thus, the principal cost is
the time it takes to read data (baskets) from the disk. Once a disk block full of baskets is read into the
main memory, it can be explored, generating all the subsets of size 4. It is necessary to point out that it
is logical to assume that the average size of a basket is small compared to the total number of all items.
Thus, generating all the pairs of items from the market-baskets in the main memory should take less
time than the time it takes to read the baskets from disk.

25
For example, if there are 25 items in a basket, then there are |:(5)= 300:| pairs of items in the

basket, and these can be generated easily in a pair of nested for-loops. But as the size of the subsets we
want to generate gets larger, the time required grows larger; it takes approximately 7" / £! time to gen-
erate all the subsets of size for a basket with 7 items. So if % is very large then the subset generation
time will dominate the time needed to transfer the data from the disk.

However, surveys have indicated that in most applications we need only small frequent itemsets. Fur-
ther, when we do need the itemsets for a large size 4, it is usually possible to eliminate many of the items
in each basket as not able to participate in a frequent itemset, so the value of 7 reduces as % increases.

Thus, the time taken to examine each of the baskets can usually be assumed proportional to the
size of the file. We can thus measure the running time of a frequent-itemset algorithm by the number
of times each disk block of the data file is read. This, in turn, is characterized by the number of passes
through the basket file that they make, and their running time is proportional to the product of the
number of passes they make through the basket file and the size of that file.

Since the amount of data is fixed, we focus only on the number of passes taken by the algorithm.
This gives us a measure of what the running time of a frequent-itemset algorithm will be.

8.3.2 Itemset Counting using Main Memory

For many frequent-itemset algorithms, main memory is the critical resource. An important comput-
ing step in almost all frequent-itemset algorithms is to maintain several different counts in each pass

8.3 ALGORITHM FOR FINDING FREQUENT ITEMSETS . 207

of the data. For example, we might need to count the number of times that each pair of items occurs
in baskets in pass 2. In the next pass along with maintaining the counts of 2-itemsets, we have to
now compute frequency of 3-itemsets and so on. Thus, we need main memory space to maintain
these counts.

If we do not have enough main memory to store each of the counts at any pass then adding 1 to
count of any previous itemset may involve loading the relevant page with the counts from secondary
memory. In the worst case, this swapping of pages may occur for several counts, which will result in
thrashing. This would make the algorithm several orders of magnitude slower than if we were certain to
find each count in main memory. In conclusion, we need counts to be maintained in the main memory.
This sets a limit on how many items a frequent-itemset algorithm can ultimately deal with. This num-
ber of different things we can count is, thus, limited by the main memory.

The naive way of counting a frequent 4-itemset is to read the file once and count in main memory
the occurrences of each k-itemset. Let 7 be the number of items. The number of itemsets of size 1 < £
< n is given by

n n!

E)” k- k)

- Example 8

Suppose we need to count all pairs of items (2-itemset) in some step, and there arez items. We thus
need space to store 7(n—1)/2 pairs. This algorithm will fail if (#items)? exceeds main memory.

Consider an e-commerce enterprise like Amazon. The number of items can be around 100K or
10B (Web pages). Thus, assuming 10° items and counts are 4-byte integers, the number of pairs of
items is

10°(10° —1
CUT =D _ 5y

Therefore, 2*10' (20 GB) of memory is needed. Thus, in general, if integers take 4 bytes, we require
approximately 272 bytes. If our machine has 2 GB, or 231 bytes of main memory, then we require
n <2 or approximately 7 < 33,000.

It is important to point out here that it is sufficient to focus on counting pairs, because the probability
of an itemset being frequent drops exponentially with size while the number of itemsets grows more
slowly with size. This argument is quite logical. The number of items, while possibly very large, is rarely
so large we cannot count all the singleton sets in main memory at the same time. For larger sets like
triples, quadruples, for frequent-itemset analysis to make sense, the result has to be a small number of
sets, or these itemsets will lose their significance. Thus, in practice, the support threshold is set high
enough that it is only a rare set that is k-frequent (£ = 2). Thus, we expect to find more frequent pairs
than frequent triples, more frequent triples than frequent quadruples, and so on. Thus, we can safely
conclude that maximum main memory space is required for counting frequent pairs. We shall, thus,
only concentrate on algorithms for counting pairs.

208 . CHAPTER 8/FREQUENT ITEMSET MINING

8.3.3 Approaches for Main Memory Counting

Before we can discuss approaches for counting of pairs in the main memory we have to first, discuss
how items in the baskets are represented in the memory. As mentioned earlier, it is more space-efficient
to represent items by consecutive positive integers from 1 to 7, where 7 is the number of distinct items.

But items will mostly be names or strings of the form “pencil”, “pen”, “crayons”, etc. We will, there-
fore, need a hash table that translates items as they appear in the file to integers. That is, each time we
see an item in the file, we hash it. If it is already in the hash table, we can obtain its integer code from
its entry in the table. If the item is not there, we assign it the next available number (from a count of
the number of distinct items seen so far) and enter the item and its code into the table.

8.3.3.1 The Triangular-Matrix Method

Coding items as integers saves some space in the main memory. Now we need to store the pair counts
efficiently. The main issue is that we should count a pair {7, j} in only one place. One way is to order the
pair so that 7 < j and only use the entry A[7 ;] in a two-dimensional (2-D) array A. But half the array
will be useless in this method. Thus, we need either the upper triangular matrix or the lower triangular
matrix. A triangular matrix can be very efficiently stored in a one-dimensional (1-D) Triangular Array.

Keep pair counts in lexicographic order:

1. {1,2}, {1, 3},..., {1, 7}, {2, 3}, {2, 4},....2, 0}, ... in-2,n-1L, {n-2,n}, {n-1, n}
2. Pair {7, j} is at position (z —=1)(n—:/2)+ j—1

Figure 8.2 shows a sample of a triangular matrix storing a set of pairs.

1,2 1,3 1,4 1,5
2,3 2,4 2,5

3,4 3,5

4,5

Pair {i, j} is at position (i—1)(n—i/2) +j—i
°{1,2:0+2-1=1 *{13}=0+3-1=2
°*{14}=0+4-1=3 {15}=0+5-1=4

°23}=2-1)*(5-2/2)+3-2=5 {24 =(2-1)*5-22)+4-2=6
e{25}=(2-1)*(5-2R)+5-2=7 +{3,4,=(3-1)*(5-3/2)+4-2=8
*{3,5}=9 *{45}=10

Pair 1,2 1,3 1,4 1,5 2,3 2,4 2,5 3,4 3,5 4,5
Position 1 2 3 4 5 6 7 8 9 10

Figure 8.2 Triangular matrix and its equivalent 1-D representation.

8.3 ALGORITHM FOR FINDING FREQUENT ITEMSETS . 209

8.3.3.2 The Triples Method

We can consider one more approach to storing counts that may be more useful when the fraction of the
possible pairs of items that actually appear in some basket may not be too high.

We can use a hash table with pairs {7, 7}, where 1 <7<;j<#, askeysand the counts as values. This
results in triplets of the form [7 7, ¢] , meaning that the count of pair {7 j} with i <jis c.

Unlike the triangular matrix approach, in this approach we only store pairs with non-zero count
value. If items and counts are represented by 4-byte integers, this approach requires 12 bytes for each
pair with non-zero value plus some overhead for the hash table.

We call this approach the triples method of storing counts. Unlike the triangular matrix, the triples
method does not require us to store anything if the count for a pair is 0. On the other hand, the triples
method requires us to store three integers, rather than one, for every pair that does appear in some

basket.

It is easy to see that the hash table approach requires less memory than the triangular matrix
approach if less than one-third of possible pairs actually occur.

Let us assume that a supermarket has 100,000 items, which means that there are about 5 billion
possible pairs. With the triangular matrix approach, we would need about 20 GB of main memory to
hold the pair counts. If all possible pairs actually occur, the hash table approach requires about 60 GB
of main memory. If only 1 billion of the possible pairs occur, however, the hash table approach would
only require about 12 GB of main memory.

How about frequent triples? Since there are [z(z —1)(z —2)]/6 triples, the naive algorithm with the
triangular matrix approach would require [47(n—1)(z—2)]/6 bytes of main memory, which is more
than 666 TB for the example above. For this reason, we want to avoid counting itemsets that will turn
out to be infrequent at the end.

- Example 9

Suppose there are 100,000 items and 10,000,000 baskets of 10 items each. Then the integer counts
required by triangular matrix method are

1000
(5] = 5x10’ (approximately)

On the other hand, the total number of pairs among all the baskets is
n
10"| , |=4.5%10°
(k] 5%

Even in the extreme case that every pair of items appeared only once, there could be only 4.5 X 10 pairs
with non-zero counts. If we used the triples method to store counts, we would need only three times

210 -« CHAPTER 8/FREQUENT ITEMSET MINING

that number of integers or 1.35 X 10? integers. Thus, in this case, the triples method will surely take
much less space than the triangular matrix.

However, even if there were 10 or a 100 times as many baskets, it would be normal for there to be a
sufficiently uneven distribution of items that we might still be better off using the triples method. That
is, some pairs would have very high counts, and the number of different pairs that occurred in one or
more baskets would be much less than the theoretical maximum number of such pairs.

8.3.4 Monotonicity Property of Itemsets

When 7 is large, a naive approach to generate and count the supports of all sets over the database cannot
be achieved within a reasonable period of time. Typically most enterprises deal with thousands of items
and thus 27, which is the number of subsets possible, is prohibitively high.

Instead, we could limit ourselves to those sets that occur at least once in the database by generating
only those subsets of all transactions in the database. Of course, for large transactions, this number
could still be too large. As an optimization, we could generate only those subsets of at most a given
maximum size. This technique also suffers from massive memory requirements for even a medium
sized database. Most other efficient solutions perform a more directed search through the search space.
During such a search, several collections of candidate sets are generated and their supports computed
until all frequent sets have been generated. Obviously, the size of a collection of candidate sets must
not exceed the size of available main memory. Moreover, it is important to generate as few candidate
sets as possible, since computing the supports of a collection of sets is a time-consuming procedure. In
the best case, only the frequent sets are generated and counted. Unfortunately, this ideal is impossible
in general. The main underlying property exploited by most algorithms is that support is monotone
decreasing with respect to extension of a set.

Property 1 (Support Monotonicity): Given a database of transactions D over / and two sets X,
Y I Then,

X, Y I = support (¥) < support (X)
Hence, if a set is infrequent, all of its supersets must be infrequent, and vice versa, if a set is frequent,
all of its subsets must be frequent too. In the literature, this monotonicity property is also called the

downward-closure property, since the set of frequent sets is downward closed with respect to set inclu-
sion. Similarly, the set of infrequent sets is upward closed.

The downward-closure property of support also allows us to compact the information about fre-
quent itemsets. First, some definitions are given below:
1. An itemset is closed if none of its immediate itemset has the same count as the itemset.
2. An itemset is closed frequent if it is frequent and closed.

3. An itemset is maximal frequent if it is frequent and none of its immediate superset is frequent.

8.3 ALGORITHM FOR FINDING FREQUENT ITEMSETS o 211

For example, assume we have items = {apple, beer, carrot} and the following baskets:

{apple, beer}
{apple, beer}
{beer, carrot}

{apple, beer, carrot}

A A O

{apple, beer, carrot}

Assume the support threshold s = 3.

Table 8.4 Indicating Frequent, Closed and Maximal Itemsets

Itemset Count Frequent? Closed? Closed Max
Freq? Freq?
{apple} 4 Yes No No No
{beer} 5 Yes Yes Yes No
{carrot} 3 Yes No No No
{apple, beer} 4 Yes Yes Yes Yes
{apple, carrot} 2 No No No No
{beer, carrot} 3 Yes Yes Yes Yes
{apple, beer, 2 No Yes No No

carrot}

From Table 8.4, we see that there are five frequent itemsets, of which only three are closed frequent,
of which in turn only two are maximal frequent. The set of all maximal frequent itemsets is a subset
of the set of all closed frequent itemsets, which in turn is a subset of the set of all frequent itemsets.
Thus, maximal frequent itemsets is the most compact representation of frequent itemsets. In practice,
however, closed frequent itemsets may be preferred since they also contain not just the frequent itemset
information, but also the exact count.

8.3.5 The Apriori Algorithm

In this section we shall we concentrate<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>